首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   5篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   11篇
  2012年   4篇
  2011年   10篇
  2010年   8篇
  2009年   4篇
  2008年   9篇
  2007年   8篇
  2006年   10篇
  2005年   5篇
  2004年   14篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
31.
We surveyed male survival and reproductive performances associated with dimorphism in the Japanese horned beetleAllomyrina dichotoma L. in a secondary forest in 1996. Morphological comparisons between living marked and prey individuals indicated that the larger horned males suffered higher predatory pressure than the smaller ones. The dominant predators of the beetles were suspected to be 2 crow species. The small-horned males showed lower recapture rates than the large-horned ones. This suggested that the former was more sensitive to disturbance, and/or dispersed more than the latter. Fighting behavior was rarely seen because of the low population density of the beetles in the study area. These results suggested that the large-horned males suffer not only the injury risk of intrasexual competition but also more predatory risk than the small-horned ones.  相似文献   
32.
Transthylakoid proton transport based on Photosystem I-dependent cyclic electron transport has been demonstrated in isolated intact spinach chloroplasts already at very low photon flux densities when the acceptor side of Photosystem I (PS I) was largely closed. It was under strict redox control. In spinach leaves, high intensity flashes given every 50 s on top of far-red, but not on top of red background light decreased the activity of Photosystem II (PS II) in the absence of appreciable linear electron transport even when excitation of PS II by the background light was extremely weak. Downregulation of PS II was a consequence of cyclic electron transport as shown by differences in the redox state of P700 in the absence and the presence of CO2 which drained electrons from the cyclic pathway eliminating control of PS II. In the presence of CO2, cyclic electron transport comes into play only at higher photon flux densities. At H+/e=3 in linear electron transport, it does not appear to contribute much ATP for carbon reduction in C3 plants. Rather, its function is to control the activity of PS II. Control is necessary to prevent excessive reduction of the electron transport chain. This helps to protect the photosynthetic apparatus of leaves against photoinactivation under light stress.  相似文献   
33.
Japanese bacillus Calmette-Guerin (BCG) vaccine preparation contains two types of variant strains, Type I, which has a 22-base-pair deletion in the RD16 region, and Type II, which has an identical sequence to those of other BCG strains. In this study, we established a method to quantify the percentage of variant strain Type II contained in freeze-dried BCG product with real-time PCR. With this method we examined the master seed lot Tokyo 172, two secondary seed lots, Tokyo 172-1 and Tokyo 172-2, which were produced from Tokyo 172, and four commercial lots produced form Tokyo 172-1. Tokyo 172, Tokyo 172-1, and Tokyo 172-2 contained 55.1%, 19.5%, and 3.6% of Type II variant strain, respectively. Commercial lots contained 1.5%, 4.5%, 7.4%, and 4.3% of Type II variant strain, respectively. These results indicated that the two variant strains contained in the master seed lot continued to coexist in subsequently produced lots with a decrease in population of variant strain Type II. This method would be useful for quality control of commercial Japanese BCG vaccine preparations.  相似文献   
34.
35.
The flavonoid quercetin is considered to have beneficial effects on human health. We recently have shown that quercetin-enriched foods reduced the duration of immobility time in a rat forced swimming test, indicating that dietary quercetin is promising as an antidepressant-like factor, whereas its mechanism of action is poorly understood. The aim of this study is to investigate the effects of quercetin on water immersion-restraint (WIR), stress-induced hypothalamic-pituitary-adrenal (HPA) axis activation, which is a major component of stress response and plays an important role in the pathology of depression. Quercetin administration to rats significantly suppressed WIR stress-induced increase of plasma corticosterone and adrenocorticotropic hormone levels as well as the mRNA expression of corticotropin-releasing factor (CRF) in the hypothalamic region. In addition, quercetin modulated the DNA binding activities of glucocorticoid receptor and phosphorylated cyclic adenosine 3′,5′-monophosphate (cAMP) response element binding protein as well as the phosphorylation of extracellular signal-regulated kinase 1/2 in the hypothalamic region, all of which are known to regulate the expression of CRF mRNA. Taken together, these results suggest that dietary quercetin attenuates the HPA axis activation by the suppression of the CRF mRNA expression.  相似文献   
36.
A transient in chlorophyll fluorescence after cessation of actinic light illumination, which has been ascribed to electron donation from stromal reductants to plastoquinone (PQ) by the NAD(P)H-dehydrogenase (NDH) complex, was investigated in Arabidopsis thaliana. The transient was absent in air in a mutant lacking the NDH complex (ndhM). However, in ndhM, the transient was detected in CO2-free air containing 2% O2. To investigate the reason, ndhM was crossed with a pgr5 mutant impaired in ferredoxin (Fd)-dependent electron donation from NADPH to PQ, which is known to be redundant for NDH-dependent PQ reduction in the cyclic electron flow around photosystem I (PSI). In ndhM pgr5, the transient was absent even in CO2-free air with 2% O2, demonstrating that the post-illumination transient can also be induced by the Fd- (or PGR5)-dependent PQ reduction. On the other hand, the transient increase in chlorophyll fluorescence was found to be enhanced in normal air in a mutant impaired in plastid fructose-1,6-bisphosphate aldolase (FBA) activity. The mutant, termed fba3-1, offers unique opportunities to examine the relative contribution of the two paths, i.e., the NDH- and Fd- (or PGR5)-dependent paths, on the PSI cyclic electron flow. Crossing fba3-1 with either ndhM or pgr5 and assessing the transient suggested that the main route for the PSI cyclic electron flow shifts from the NDH-dependent path to the Fd-dependent path in response to sink limitation of linear electron flow.  相似文献   
37.
In addition to linear electron transport from water to NADP+, alternative electron transport pathways are believed to regulate photosynthesis. In the two routes of photosystem I (PSI) cyclic electron transport, electrons are recycled from the stromal reducing pool to plastoquinone (PQ), generating additional ΔpH (proton gradient across thylakoid membranes). Plastid terminal oxidase (PTOX) accepts electrons from PQ and transfers them to oxygen to produce water. Although both electron transport pathways share the PQ pool, it is unclear whether they interact in vivo. To investigate the physiological link between PSI cyclic electron transport‐dependent PQ reduction and PTOX‐dependent PQ oxidation, we characterized mutants defective in both functions. Impairment of PSI cyclic electron transport suppressed leaf variegation in the Arabidopsis immutans (im) mutant, which is defective in PTOX. The im variegation was more effectively suppressed in the pgr5 mutant, which is defective in the main pathway of PSI cyclic electron transport, than in the crr2‐2 mutant, which is defective in the minor pathway. In contrast to this chloroplast development phenotype, the im defect alleviated the growth phenotype of the crr2‐2 pgr5 double mutant. This was accompanied by partial suppression of stromal over‐reduction and restricted linear electron transport. We discuss the function of the alternative electron transport pathways in both chloroplast development and photosynthesis in mature leaves.  相似文献   
38.
In this study, Rv2613c, a protein that is encoded by the open reading frame Rv2613c in Mycobacterium tuberculosis H37Rv, was expressed, purified, and characterized for the first time. The amino acid sequence of Rv2613c contained a histidine triad (HIT) motif consisting of H-phi-H-phi-H-phi-phi, where phi is a hydrophobic amino acid. This motif has been reported to be the characteristic feature of several diadenosine 5′,5′′′-P1,P4-tetraphosphate (Ap4A) hydrolases that catalyze Ap4A to adenosine 5′-triphosphate (ATP) and adenosine monophosphate (AMP) or 2 adenosine 5′-diphosphate (ADP). However, enzymatic activity analyses for Rv2613c revealed that Ap4A was converted to ATP and ADP, but not AMP, indicating that Rv2613c has Ap4A phosphorylase activity rather than Ap4A hydrolase activity. The Ap4A phosphorylase activity has been reported for proteins containing a characteristic H-X-H-X-Q-phi-phi motif. However, no such motif was found in Rv2613c. In addition, the amino acid sequence of Rv2613c was significantly shorter compared to other proteins with Ap4A phosphorylase activity, indicating that the primary structure of Rv2613c differs from those of previously reported Ap4A phosphorylases. Kinetic analysis revealed that the Km values for Ap4A and phosphate were 0.10 and 0.94 mM, respectively. Some enzymatic properties of Rv2613c, such as optimum pH and temperature, and bivalent metal ion requirement, were similar to those of previously reported yeast Ap4A phosphorylases. Unlike yeast Ap4A phosphorylases, Rv2613c did not catalyze the reverse phosphorolysis reaction. Taken together, it is suggested that Rv2613c is a unique protein, which has Ap4A phosphorylase activity with an HIT motif.  相似文献   
39.
To assess the efficacy of conjugated quercetin metabolites as attenuators for oxidative stress in the central nervous system, we measured the 13-hydroperoxyoctadecadienoic acid (13-HPODE)-dependent formation of reactive oxygen species (ROS) in pheochromocytoma PC-12 cells in the presence of quercetin 3-O-β-glucuronide (Q3GA) and related compounds. A 2',7'-dichlorofluorescin (DCFH) assay showed that Q3GA significantly suppressed the formation of ROS, when it was coincubated with 13-HPODE (coincubation system). However, it was less effective than quercetin aglycon in the concentration range from 0.5 to 10 μM. In an experiment in which the cells were incubated with the test compounds for 24 h before being exposed to 13-HPODE, Q3GA was also effective in suppressing the formation of ROS in spite that little Q3GA was taken up into the cells. These results suggest that antioxidative metabolites of quercetin are capable of protecting nerve cells from attack of lipid hydroperoxides.  相似文献   
40.
A potential role of DNA damage by leukocyte-derived reactive species in carcinogenesis has been suggested. Leukocyte-derived peroxidases, such as myeloperoxidase and eosinophil peroxidase, use hydrogen peroxide and halides (Cl- and Br-) to generate hypohalous acids (HOCl and HOBr), halogenating intermediates. It has been suggested that these oxidants lead to the formation of halogenated products upon reaction with nucleobases. To verify the consequences of phagocyte-mediated DNA damage at the site of inflammation, we developed a novel monoclonal antibody (mAb2D3) that recognizes the hypohalous acid-modified DNA and found that the antibody most significantly recognized HOCl/HOBr-modified 2'-deoxycytidine residues. The immunoreactivity of HOCl-treated oligonucleotide was attenuated by excess methionine, suggesting that chloramine-like species may be the plausible epitopes of the antibody. On the basis of further characterization combined with mass spectrometric analysis, the epitopes of mAb2D3 were determined to be novel N4,5-dihalogenated 2'-deoxycytidine residues. The formation of the dihalogenated 2'-deoxycytidine in vivo was immunohistochemically demonstrated in the lung and liver nuclei of mice treated with lipopolysaccharides, an experimental inflammatory model. These results strongly suggest that phagocyte-derived oxidants, hypohalous acids, endogenously generate the halogenated DNA bases such as a novel dihalogenated 2'-deoxycytidine in vivo. Halogenation (chlorination and/or bromination) of DNA therefore may constitute one mechanism for oxidative DNA damage at the site of inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号