首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2430篇
  免费   143篇
  国内免费   3篇
  2023年   7篇
  2022年   12篇
  2021年   23篇
  2020年   13篇
  2019年   26篇
  2018年   30篇
  2017年   29篇
  2016年   28篇
  2015年   68篇
  2014年   91篇
  2013年   177篇
  2012年   151篇
  2011年   147篇
  2010年   90篇
  2009年   91篇
  2008年   166篇
  2007年   154篇
  2006年   123篇
  2005年   146篇
  2004年   136篇
  2003年   165篇
  2002年   185篇
  2001年   37篇
  2000年   23篇
  1999年   30篇
  1998年   47篇
  1997年   29篇
  1996年   20篇
  1995年   34篇
  1994年   22篇
  1993年   18篇
  1992年   21篇
  1991年   16篇
  1990年   18篇
  1989年   11篇
  1988年   13篇
  1987年   12篇
  1986年   8篇
  1985年   14篇
  1984年   17篇
  1983年   9篇
  1982年   11篇
  1981年   10篇
  1980年   13篇
  1979年   8篇
  1977年   7篇
  1975年   9篇
  1974年   9篇
  1973年   10篇
  1972年   6篇
排序方式: 共有2576条查询结果,搜索用时 171 毫秒
991.
992.
The intracellular calcium ion is one of the most important secondary messengers in eukaryotic cells. Ca(2+) signals are translated into physiological responses by EF-hand calcium-binding proteins such as calmodulin (CaM). Multiple CaM isoforms occur in plant cells, whereas only a single CaM protein is found in animals. Soybean CaM isoform 1 (sCaM1) shares 90% amino acid sequence identity with animal CaM (aCaM), whereas sCaM4 is only 78% identical. These two sCaM isoforms have distinct target-enzyme activation properties and physiological functions. sCaM4 is highly expressed during the self-defense reaction of the plant and activates the enzyme nitric-oxide synthase (NOS), whereas sCaM1 is incapable of activating NOS. The mechanism of selective target activation by plant CaM isoforms is poorly understood. We have determined high resolution NMR solution structures of Ca(2+)-sCaM1 and -sCaM4. These were compared with previously determined Ca(2+)-aCaM structures. For the N-lobe of the protein, the solution structures of Ca(2+)-sCaM1, -sCaM4, and -aCaM all closely resemble each other. However, despite the high sequence identity with aCaM, the C-lobe of Ca(2+)-sCaM1 has a more open conformation and consequently a larger hydrophobic target-protein binding pocket than Ca(2+)-aCaM or -sCaM4, the presence of which was further confirmed through biophysical measurements. The single Val-144 --> Met substitution in the C-lobe of Ca(2+)-sCaM1, which restores its ability to activate NOS, alters the structure of the C-lobe to a more closed conformation resembling Ca(2+)-aCaM and -sCaM4. The relationships between the structural differences in the two Ca(2+)-sCaM isoforms and their selective target activation properties are discussed.  相似文献   
993.
Super-growing roots (superroots; SR), which have been established in the legume species Lotus corniculatus, are a fast-growing root culture that allows continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely growth regulator-free culture conditions. These features are unique for non-hairy root cultures, and they are now stably expressed since the culture was isolated more than 10 years ago (1997). Attempts to achieve direct and stable transformation of SR turned out to be unsuccessful. Making use of the supple regeneration plasticity of SR, we are reporting here an indirect transformation protocol. Leaf explants, derived from plants regenerated from SR, were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pBI121, which contains the neomycin phosphotransferase II (NPTII) and beta-glucuronidase (GUS) genes as selectable and visual markers, respectively. After co-cultivation, the explants were selected on solidified MS medium with 0.5mg/L benzylamino purine (BAP), 100mg/L kanamycin and 250mg/L cefotaxime. Kanamycin-resistant calli were transferred to liquid rooting medium. The newly regenerated, kanamycin-resistant roots were harvested and SR cultures re-established, which exhibited all the characteristics of the original SR. Furthermore, kanamycin-resistant roots cultured onto solidified MS medium supplemented with 0.5mg/L BAP produced plants at the same rate as control SR. Six months after gene transfer, PCR analysis and histochemical locating indicated that the NPTII gene was integrated into the genome and that the GUS gene was regularly expressed in leaves, roots and nodules, respectively. The protocol makes it now possible to produce transformed SR and nodules as well as transgenic plants from transformed SR.  相似文献   
994.
Since first identifying two alleles of a rice (Oryza sativa) brassinosteroid (BR)-insensitive mutant, d61, that were also defective in an orthologous gene in Arabidopsis (Arabidopsis thaliana) BRASSINOSTEROID INSENSITIVE1 (BRI1), we have isolated eight additional alleles, including null mutations, of the rice BRI1 gene OsBRI1. The most severe mutant, d61-4, exhibited severe dwarfism and twisted leaves, although pattern formation and differentiation were normal. This severe shoot phenotype was caused mainly by a defect in cell elongation and the disturbance of cell division after the determination of cell fate. In contrast to its severe shoot phenotype, the d61-4 mutant had a mild root phenotype. Concomitantly, the accumulation of castasterone, the active BR in rice, was up to 30-fold greater in the shoots, while only 1.5-fold greater in the roots. The homologous genes for OsBRI1, OsBRL1 and OsBRL3, were highly expressed in roots but weakly expressed in shoots, and their expression was higher in d61-4 than in the wild type. Based on these observations, we conclude that OsBRI1 is not essential for pattern formation or organ initiation, but is involved in organ development through controlling cell division and elongation. In addition, OsBRL1 and OsBRL3 are at least partly involved in BR perception in the roots.  相似文献   
995.
The rice (Oryza sativa) dwarf mutant d61 phenotype is caused by loss of function of a rice BRASSINOSTEROID INSENSITIVE1 ortholog, OsBRI1. We have identified nine d61 alleles, the weakest of which, d61-7, confers agronomically important traits such as semidwarf stature and erect leaves. Because erect-leaf habit is considered to increase light capture for photosynthesis, we compared the biomass and grain production of wild-type and d61-7 rice. The biomass of wild type was 38% higher than that of d61-7 at harvest under conventional planting density because of the dwarfism of d61-7. However, the biomass of d61-7 was 35% higher than that of wild type at high planting density. The grain yield of wild type reached a maximum at middensity, but the yield of d61-7 continued to increase with planting density. These results indicate that d61-7 produces biomass more effectively than wild type, and consequently more effectively assimilates the biomass in reproductive organ development at high planting density. However, the small grain size of d61-7 counters any increase in grain yield, leading to the same grain yield as that of wild type even at high density. We therefore produced transgenic rice with partial suppression of endogenous OsBRI1 expression to obtain the erect-leaf phenotype without grain changes. The estimated grain yield of these transformants was about 30% higher than that of wild type at high density. These results demonstrate the feasibility of generating erect-leaf plants by modifying the expression of the brassinosteroid receptor gene in transgenic rice plants.  相似文献   
996.
997.
998.
999.
In this study, we compared the growth properties and molecular characteristics of pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) among highly acetic acid-resistant strains of acetic acid bacteria. Ga. europaeus exhibited the highest resistance to acetic acid (10%), whereas Ga. intermedius and Acetobacter pasteurianus resisted up to 6% of acetic acid. In media with different concentrations of acetic acid, the maximal acetic acid production rate of Ga. europaeus slowly increased, but specific growth rates decreased concomitant with increased concentration of acetic acid in medium. The lag phase of A. pasteurianus was twice and four times longer in comparison to the lag phases of Ga. europaeus and Ga. intermedius, respectively. PQQ-dependent ADH activity was twice as high in Ga. europaeus and Ga. intermedius as in A. pasteurinus. The purified enzymes showed almost the same specific activity to each other, but in the presence of acetic acid, the enzyme activity decreased faster in A. pasteurianus and Ga. intermedius than in Ga. europaeus. These results suggest that high ADH activity in the Ga. europaeus cells and high acetic acid stability of the purified enzyme represent two of the unique features that enable this species to grow and stay metabolically active at extremely high concentrations of acetic acid.  相似文献   
1000.
The culprit behind adult T-cell leukemia, myelopathy/tropical paraparesis, and a plethora of inflammatory diseases is the human T-cell leukemia virus type 1 (HTLV-I). We recently unveiled a potent hexapeptidic HTLV-I protease inhibitor, KNI-10166, composed mostly of natural amino acid residues. Herein, we report the derivation of potent tetrapeptidic inhibitor KNI-10516, possessing only non-natural amino acid residues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号