首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   27篇
  2021年   3篇
  2019年   5篇
  2018年   8篇
  2017年   6篇
  2016年   8篇
  2015年   14篇
  2014年   18篇
  2013年   26篇
  2012年   24篇
  2011年   24篇
  2010年   19篇
  2009年   22篇
  2008年   30篇
  2007年   23篇
  2006年   35篇
  2005年   23篇
  2004年   33篇
  2003年   31篇
  2002年   18篇
  2001年   27篇
  2000年   23篇
  1999年   14篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   17篇
  1991年   17篇
  1990年   12篇
  1989年   14篇
  1988年   10篇
  1987年   9篇
  1986年   11篇
  1985年   7篇
  1983年   7篇
  1982年   4篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1972年   4篇
  1969年   5篇
  1968年   3篇
  1966年   2篇
排序方式: 共有616条查询结果,搜索用时 296 毫秒
101.
The bacterial community structures in four Japanese split-type air conditioners were analyzed using a next-generation sequencer. A variety of bacteria were detected in the air filter of an air conditioner installed on the first floor. In the evaporator of this air conditioner, bacteria belonging to the genus Methylobacterium, or the family of Sphingomonadaceae, were predominantly detected. On the other hand, the majority of bacteria detected in the air filters and evaporators of air conditioners installed on the fifth and twelfth floors belonged to the family Enterobacteriaceae. The source of bacteria belonging to the family Enterobacteriaceae may have been aerosols generated by toilet flushing in the buildings. Our results suggested the possibility that the bacterial contamination in the air conditioners was affected by the floor level on which they were installed. The air conditioner installed on the lower floor, near the ground, may have been contaminated by a variety of outdoor bacteria, whereas the air conditioners installed on floors more distant from the ground may have been less contaminated by outdoor bacteria. However, these suppositions may apply only to the specific split-type air conditioners that we analyzed, because our sample size was small.  相似文献   
102.

Background and Aims

The effects of Sb(V), alone or combined with Se, on the growth and root development of plants are unknown. The aim of this study is to investigate the interaction between selenite and different forms of Sb and the effects on their uptake in rice and on rice root morphology.

Methods

A hydroponic experiment was conducted that contained fourteen treatments. The treatment levels for Se were 0.5 and 1 mg L?1, and the treatment levels for Sb(III) and Sb(V) were 5 and 15 mg L?1.

Results

Sb(V) alone significantly reduced the surface area, mean diameter and volume of the roots, whereas Sb(III) alone reduced the values of most parameters of root morphology. The addition of 1 mg L?1 Se significantly enhanced the surface area, number of medium roots, and Sb concentration in the roots subjected to 15 mg L?1 Sb(V), but it decreased the number of root forks, the number and proportion of fine roots, and the shoot Sb concentration under exposure to 15 mg L?1 Sb(III). When the plants were subjected to 1 mg L?1 Se, the addition of 15 mg L?1 Sb(III) markedly reduced the shoot and root Se concentrations and the number of root tips, root forks, and fine roots and increased the mean root diameter. However, the addition of Sb(V) did not significantly affect the root and shoot Se concentrations but significantly decreased the number of root forks and fine roots and increased the proportion of medium roots.

Conclusions

Se and Sb(III) showed antagonistic effects on uptake in the shoots, but not in the roots, of paddy rice. A range of Se concentrations could stimulate the uptake of Sb in both the shoots and roots of paddy rice exposed to Sb(V).
  相似文献   
103.
Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.  相似文献   
104.
Chloroplasts change their intracellular distribution in response to light intensity. Previously, we isolated the chloroplast unusual positioning1 (chup1) mutant of Arabidopsis (Arabidopsis thaliana). This mutant is defective in normal chloroplast relocation movement and shows aggregation of chloroplasts at the bottom of palisade mesophyll cells. The isolated gene encodes a protein with an actin-binding motif. Here, we used biochemical analyses to determine the subcellular localization of full-length CHUP1 on the chloroplast outer envelope. A CHUP1-green fluorescent protein (GFP) fusion, which was detected at the outermost part of mesophyll cell chloroplasts, complemented the chup1 phenotype, but GFP-CHUP1, which was localized mainly in the cytosol, did not. Overexpression of the N-terminal hydrophobic region (NtHR) of CHUP1 fused with GFP (NtHR-GFP) induced a chup1-like phenotype, indicating a dominant-negative effect on chloroplast relocation movement. A similar pattern was found in chloroplast OUTER ENVELOPE PROTEIN7 (OEP7)-GFP transformants, and a protein containing OEP7 in place of NtHR complemented the mutant phenotype. Physiological analyses of transgenic Arabidopsis plants expressing truncated CHUP1 in a chup1 mutant background and cytoskeletal inhibitor experiments showed that the coiled-coil region of CHUP1 anchors chloroplasts firmly on the plasma membrane, consistent with the localization of coiled-coil GFP on the plasma membrane. Thus, CHUP1 localization on chloroplasts, with the N terminus inserted into the chloroplast outer envelope and the C terminus facing the cytosol, is essential for CHUP1 function, and the coiled-coil region of CHUP1 prevents chloroplast aggregation and participates in chloroplast relocation movement.  相似文献   
105.
The beta-substituted alanine (Ala) synthase (Bsas) family in the large superfamily of pyridoxal 5'-phosphate-dependent enzymes comprises cysteine (Cys) synthase (CSase) [O-acetyl-serine (thiol) lyase] and beta-cyano-Ala synthase (CASase) in plants. Nine genomic sequences encode putative Bsas proteins in Arabidopsis thaliana. The physiological roles of these Bsas isoforms in vivo were investigated by the characterization of T-DNA insertion mutants. Analyses of gene expression, activities of CSase and CASase, and levels of Cys and glutathione in the bsas mutants indicated that cytosolic Bsas1;1, plastidic Bsas2;1, and mitochondrial Bsas2;2 play major roles in Cys biosynthesis. Cytosolic Bsas1;1 has the most dominant contribution both in leaf and root, and mitochondrial Bsas2;2 plays a significant role in root. Mitochondrial Bsas3;1 is a genuine CASase. Nontargeted metabolome analyses of knockout mutants were carried out by a combination of gas chromatography time-of-flight mass spectrometry and capillary electrophoresis time-of-flight mass spectrometry. The level of gamma-glutamyl-beta-cyano-Ala decreased in the mutant bsas3;1, indicating the crucial role of Bsas3;1 in beta-cyano-Ala metabolism in vivo.  相似文献   
106.
107.
Claudins constitute tight junction (TJ) strands. In order to examine the function of the second extracellular loop (ECL2), we constructed 1CLΔFY and 1CLΔPL in which highly conserved amino acids, FY or PL, in the ECL2 of mouse claudin-1 were deleted. They were then tagged with either EGFP at the NH2-terminus (EGFP1CLΔFY and EGFP1CLΔPL) or the myc-epitope at the COOH-terminus (1CLΔFYmyc and 1CLΔPLmyc). The expression of EGFP1CLΔFY and EGFP1CLΔPL in TJ-free HEK293 cells formed TJ strands resembling those formed by wild-type claudin-1. The expression of 1CLΔPLmyc in TJ-bearing MDCK II cells induced aberrant TJ strands in the lateral plasma membranes whose intramembranous particles were almost equally distributed in the P- and E-face. In contrast, 1CLΔFYmyc formed aggregates of short continuous strands which were frequently associated with vesicle-like structures. Coculture experiments with MDCK II cells showed that 1CLΔPLmyc was localized at heterotypic cell–cell junctions but 1CLΔFYmyc was not. These results suggest that changes in the TJ morphology due to the expression of either 1CLΔFYmyc or 1CLΔPLmyc may be caused by some factors specific to epithelial MDCK II cells including endogenous claudins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
108.
Neurodegenerative tauopathies, including Alzheimer disease, are characterized by abnormal hyperphosphorylation of the microtubule-associated protein Tau. One group of tauopathies, known as frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), is directly associated with mutations of the gene tau. However, it is unknown why mutant Tau is highly phosphorylated in the patient brain. In contrast to in vivo high phosphorylation, FTDP-17 Tau is phosphorylated less than wild-type Tau in vitro. Because phosphorylation is a balance between kinase and phosphatase activities, we investigated dephosphorylation of mutant Tau proteins, P301L and R406W. Tau phosphorylated by Cdk5-p25 was dephosphorylated by protein phosphatases in rat brain extracts. Compared with wild-type Tau, R406W was dephosphorylated faster and P301L slower. The two-dimensional phosphopeptide map analysis suggested that faster dephosphorylation of R406W was due to a lack of phosphorylation at Ser-404, which is relatively resistant to dephosphorylation. We studied the effect of the peptidyl-prolyl isomerase Pin1 or microtubule binding on dephosphorylation of wild-type Tau, P301L, and R406W in vitro. Pin1 catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro sequences in a subset of proteins. Dephosphorylation of wild-type Tau was reduced in brain extracts of Pin1-knockout mice, and this reduction was not observed with P301L and R406W. On the other hand, binding to microtubules almost abolished dephosphorylation of wild-type and mutant Tau proteins. These results demonstrate that mutation of Tau and its association with microtubules may change the conformation of Tau, thereby suppressing dephosphorylation and potentially contributing to the etiology of tauopathies.One of hallmarks of Alzheimer disease (AD)3 pathology is neurofibrillary tangles, which are composed of paired helical filaments (PHFs), aggregates of the abnormally phosphorylated microtubule-associated protein Tau. Intracellular inclusions comprising Tau are also found in several other neurodegenerative diseases, including Pick disease, progressive supranuclear palsy, corticobasal degeneration, and frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), collectively called tauopathies (13). Identification of Tau as a causative gene of the inherited tauopathy FTDP-17 reveals that Tau mutation is sufficient to cause disease (46). However, the impact Tau mutations have on neurodegeneration remains unknown.Tau proteins in inclusions are hyperphosphorylated, and extensive studies have identified the phosphorylation sites; for example, more than 20 sites have been identified in PHF-Tau obtained from AD brains (7, 8). Tau can be phosphorylated by a variety of protein kinases, including glycogen synthase kinase 3β (GSK3β), cyclin-dependent kinase 5 (Cdk5), mitogen-activated protein kinase, cAMP-dependent protein kinase (PKA), microtubule affinity regulating kinase, and others (911). Tau is predominantly phosphorylated on the Ser or Thr residue in Ser/Thr-Pro sequences, suggesting the involvement of proline-directed protein kinases such as GSK3β and Cdk5 in hyperphosphorylation. A critical question is how mutations in Tau induce hyperphosphorylation in brain (12). Early phosphorylation experiments in vitro and in cultured cells have shown that mutant Tau is less phosphorylated than wild-type (WT) Tau (1318). However, two later studies demonstrated higher phosphorylation of mutant Tau using brain extracts as a source of protein kinases in the presence of protein phosphatase inhibitor okadaic acid (19) or in immortalized cortical cells (20). However, it is not fully understood how mutant Tau becomes highly phosphorylated in vivo.Tau hyperphosphorylation could also be attributed to reduced dephosphorylation activity. Tau is dephosphorylated in vitro by any of the major four classes of protein phosphatases, PP1, PP2A, PP2B, and PP2C, but PP2A is thought to be the major protein phosphatase that regulates Tau phosphorylation state in brains (2123). PP2A activity reportedly is decreased in AD brain (2426), and highly phosphorylated Tau in PHF is relatively resistant to dephosphorylation by PP2A (27). Few studies have been done on dephosphorylation of mutant Tau, however, and thus the mechanism remains unclear. One putative factor involved in mutant Tau dephosphorylation is the peptidyl-prolyl isomerase Pin1. Pin1 catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro sequences in a subset of proteins (28, 29). Pin1 is involved in AD pathogenesis as shown by the fact that it is found in neurofibrillary tangles and that Tau is hyperphosphorylated in Pin1-deficient mouse brains (30). Pin1 is indicated to facilitate Tau dephosphorylation via PP2A by binding to the phospho-Thr-231-Pro or phospho-Thr-212-Pro site (3133). The effect of Pin1 on the stability of mutant Tau was recently reported (34), but a detailed analysis of Pin1 action on mutant Tau has not been reported. Another possible factor affecting dephosphorylation of mutant Tau is the binding to microtubules. We previously showed that phosphorylation of Tau is stimulated upon binding to microtubules (35). We thus hypothesized that binding to microtubules may also affect the extent of Tau dephosphorylation.Here, we examined the effects of Pin1 and binding to microtubules on dephosphorylation of WT and FTDP-17 mutant (P301L and R406W) Tau proteins that had been phosphorylated by Cdk5-p25 or Cdk5-p35. P301L and R406W are two distinct types of FTDP-17 mutants that have been studied well. We show for the first time how the regulation of Tau dephosphorylation can contribute to the observed Tau hyperphosphorylation in tauopathies.  相似文献   
109.
Paclitaxel (also known as Taxol) is a well-known anticancer agent that blocks cell mitosis and kills tumor cells, and is often used in clinic to treat cancers. Despite the success of Paclitaxel, the development of drug resistance prevents its clinical applicability. Here, we screened an siRNA library against the entire human genomes using HeLa cells, and have find that lack of USP15 (ubiquitin-specific protease 15) causes Paclitaxel resistance. We also observed the decreased expression of USP15 in Paclitaxel-resistant human ovarian cancer samples. In addition, we have demonstrated that USP15 plays an essential role for stability and activity of caspase-3 during Paclitaxel-induced apoptosis. Thus, USP15 may be a candidate diagnostic marker and therapeutic target for Paclitaxel-resistant cancers.  相似文献   
110.
To enable studies to elucidate the detailed biological function of dysiherbaine and neodysiherbaine A, potent and subunit-selective agonists for ionotropic glutamate receptors, the derivative with a hydroxymethyl substituent at the C10 position has been developed. Preliminary biological evaluation of the analogue showed that a C10 hydroxymethyl substituent produced significant alterations in binding affinities for the ionotropic glutamate receptor subtypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号