首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   690篇
  免费   34篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2018年   7篇
  2017年   8篇
  2016年   7篇
  2015年   15篇
  2014年   22篇
  2013年   35篇
  2012年   26篇
  2011年   30篇
  2010年   27篇
  2009年   23篇
  2008年   40篇
  2007年   42篇
  2006年   28篇
  2005年   38篇
  2004年   38篇
  2003年   39篇
  2002年   39篇
  2001年   27篇
  2000年   36篇
  1999年   23篇
  1998年   11篇
  1997年   3篇
  1995年   8篇
  1994年   4篇
  1993年   8篇
  1992年   10篇
  1991年   15篇
  1990年   11篇
  1989年   16篇
  1988年   5篇
  1987年   13篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   8篇
  1982年   3篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有724条查询结果,搜索用时 15 毫秒
51.
When a protein exhibits complex kinetics of refolding, we often ascribe the complexity to slow isomerization events in the denatured protein, such as cis/trans isomerization of peptidyl prolyl bonds. Does the complex folding kinetics arise only from this well-known reason? Here, we have investigated the refolding of a proline-free variant of staphylococcal nuclease by stopped-flow, double-jump techniques, to examine the folding reactions without the slow prolyl isomerizations. As a result, the protein folds into the native state along at least two accessible parallel pathways, starting from a macroscopically single denatured-state ensemble. The presence of intermediates on the individual folding pathways has revealed the existence of multiple parallel pathways, and is characterized by multi-exponential folding kinetics with a lag phase. Therefore, a "single" amino acid sequence can fold along the multiple parallel pathways. This observation in staphylococcal nuclease suggests that the multiple folding may be more general than we have expected, because the multiple parallel-pathway folding cannot be excluded from proteins that show simpler kinetics.  相似文献   
52.
A method for expression and purification of a soluble form of histidine (HIS)-tagged murine prion protein (bacMuPrP), which lacks the entire C-terminal cleavage and glycosyl phosphatidyl inositol (GPI) addition site, has been developed using a recombinant baculovirus expression system and purification with Ni-NTA agarose affinity chromatography. In mammalian sources, PrP(C) is attached to the cell membrane by a GPI anchor. However, in our system, bacMuPrP was secreted into the media, enabling its easy purification in abundance. Indirect immunofluorescence studies and immunoblot analysis localized not in cell membrane but in the perinuclear endoplasmic reticulum region in cells and is secreted into the media. Tunicamycin treatment revealed non-glycosylated proteins were secreted into the media, suggesting that glycosylation is not necessary for bacMuPrP secretion. Density-gradient sedimentation analysis demonstrated a sedimentation coefficient of secretory bacMuPrP as 2.3 S, indicating a monomeric form. Although affinity-purified PrP from mouse brain or recombinant prion protein (PrP) produced by Escherichia coli and refolded in the presence of copper has been reported to display superoxide dismutase (SOD) activity, bacMuPrP did not show SOD activity. These results suggest that bacMuPrP has a different biochemical and biophysical characterization from mammalian and bacterial-derived PrP. Furthermore, this simple expression system may provide an adequate source for structural, functional, and biochemical analyses of PrP.  相似文献   
53.
54.
The purpose of this report was to determine the effect of prion protein (PrP) gene disruption on T lymphocyte function. Previous studies have suggested that normal cellular prion protein (PrP(c)) binds to copper and Cu(2+) is essential for interleukin-2 (IL-2) mRNA synthesis. In this study, IL-2 mRNA levels in a copper-deficient condition were investigated using T lymphocytes from prion protein gene-deficient (PrP(0/0)) and wild-type mice. Results showed that Cu(2+) deficiency had no effect on PrP(c) expression in Con A-activated splenocytes. However, a delay in IL-2 gene expression was observed in PrP(0/0) mouse T lymphocyte cultures using Con A and Cu(2+)-chelator. These results suggest that PrP(c) expression may play an important role in rapid Cu(2+) transfer in T lymphocytes. The rapid transfer of Cu(2+) in murine T lymphocytes could be one of the normal functions of PrP(c).  相似文献   
55.
The influences of Zn and Cu on soil enzyme activities (acid phosphatase, alkaline phosphatase, arylsulfatase, cellulase, dehydrogenase, protease (z-FLase), urease, beta-D-glucosidase and beta-D-fructofuranosidase (invertase)) and microbial biomass carbon were investigated in agricultural soils amended with municipal sewage sludge or compost since 1978. The trace metals in the soils were fractionated using a sequential extraction method. Long-term application of the sewage sludge and composts caused accumulations of Cu and Zn in the soils, ranging from 140 to 144 and from 216 to 292 mg kg(-1), respectively. The percentage of Cu was highest in the NaOH- and HNO3-extractable fractions (44-51% and 38-46%, respectively), while the percentage of Zn was highest in the HNO3- and EDTA-extractable fractions (65-83% and 11-32%, respectively). Although the percentage of the bioavailable fractions (sum of KNO3 + H2O-, NaOH-, and EDTA-extractable amounts) of Cu (53-64%) was higher than that of Zn (15-37%), the percentage of the most labile fractions (KNO3 + H2O) of Zn (2.1-5.9%) was larger than that of Cu (1.1-2.4%). The size of the microbial biomass carbon increased with the application of sewage sludge or compost. For some enzymes, however, the ratio of the enzyme activity to microbial biomass was lower in the soils amended with sewage sludge or compost than that in the control soil. The soil enzyme activities were more adversely affected by Zn than by Cu. From a multiple regression analysis, it was found that dehydrogenase, urease, and beta-D-glucosidase activities were reduced by the KNO3 + H2O-extractable fraction of Zn in the soils. These microbial activities seem to be sensitive to Zn stress, indicating the possibility that they might be useful bioindicators for evaluation of the toxic effects of Zn on microorganisms in the soils.  相似文献   
56.
We studied the antitumor effects of photodynamic therapy (PDT) with Zincphyrin, coproporphyrin III with zinc, derived from Streptomyces sp. AC8007, in vitro and in vivo. The photokilling effect of Zincphyrin in the presence of 0.78-100 microg/ml with visible light of 27.2 mW x min/cm2 for 10 min was lower than the hematoporphyrin (Hp) used as a control with L5178Y or sarcoma-180 cells. On the other hand, Zincphyrin apparently reduced tumor growth after intraperitoneal injection at doses of 12.5-50 mg/kg with light irradiation of 75.48 mW x min/cm2 for 10 min in sarcoma-180-bearing mice. Although no mice treated with Zincphyrin died, Hp did cause the death of mice. In B-16 melanoma-bearing mice, both Zincphyrin and Hp had a similar phototherapic effect. Further improvement of the phototherapic effect was observed with the continuous administration of Zincphyrin at 12.5 mg/kg per day for 3 days. The concentration of Zincphyrin in the serum reached a maximum level of 16 microg/ml within 20 min, and the concentration remained at 4.2 microg/ml at 1 hour after the onset of treatment, indicating its rapid action in the body. No animals died after the intraperitoneal administration of Zincphyrin at 100 mg/kg plus exposure to light of 10 mW x min/cm2 for 2 hours, and the body weight of the mice did not decrease. In contrast, all animals receiving 100 mg/kg of Hp under the same conditions died. These results indicate that Zincphyrin would be a useful photosensitizer with low phototoxicity.  相似文献   
57.
We found that azoxymethane and dietary deoxycholate induced liver tumors in rats. The incidence and the development of the tumor were closely related to the enterohepatic circulation of bile acids. The feeding of a high-molecular-weight fraction of soy protein digest (HMF) suppressed the tumorigenesis, probably due to the inhibitory effect of soybean resistant protein on reabsorption of bile acids in the intestine.  相似文献   
58.
We investigated the effect of vanadate, a tyrosine phosphatase inhibitor, on cell death induced by peroxynitrite in human neuroblastoma SH-SY5Y cells. Vanadate prevented cell death induced by 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor; whereas SIN-1-induced cell death was not prevented by neither okadaic acid, an inhibitor of serine/threonine phosphatases 1 and 2A, nor cyclosporin A, an inhibitor of serine/threonine phosphatase 2B. Vanadate did not prevent cell death induced by N-ethyl-2-(1-ethyl-hydroxy-2-nitrosohydrazino)-ethanamine, a nitric oxide donor. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), did not block the protective effect of vanadate, suggesting that the protective effect of vanadate is independent on PI3-kinase. Vanadate increased tyrosine phosphorylation of several proteins including the focal adhesion protein p130 Crk-associated substrate (p130(cas)). By the treatment with SIN-1, the endogenous association of p130(cas) and Crk was disrupted, and the association was restored by vanadate treatment. These results suggest that disruption of tyrosine phosphorylation signaling may be critical for peroxynitrite-induced cell death, and that vanadate prevents cell death at least in part through the enhancement in tyrosine phosphorylation of the proteins including p130(cas).  相似文献   
59.
The clinical use of doxorubicin, an antineoplasmic agent, is limited by its extensive cardiotoxicity which is mediated by the mobilization of intracellular Ca2+ from SR. In order to elucidate the mechanism of Ca2+ release, we analyzed the binding sites of doxorubicin on rabbit cardiac SR (sarcoplasmic reticulum). One of the binding sites was identified as cardiac-type ryanodine receptor (RyR2) which was purified by immunoprecipitation from solubilized cardiac SR in the presence of DTT. Ligand blot analysis revealed the direct binding of doxorubicin to RyR2. The binding of doxorubicin to RyR2 was specific and displaced by caffeine. Both doxorubicin and caffeine enhanced [3H]-ryanodine binding to RyR2 in a Ca2+ dependent manner. These results suggest that there is a doxorubicin binding site on RyR2.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号