首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   34篇
  526篇
  2021年   3篇
  2018年   2篇
  2017年   3篇
  2016年   9篇
  2015年   13篇
  2014年   12篇
  2013年   25篇
  2012年   33篇
  2011年   40篇
  2010年   19篇
  2009年   18篇
  2008年   30篇
  2007年   30篇
  2006年   37篇
  2005年   20篇
  2004年   27篇
  2003年   32篇
  2002年   26篇
  2001年   6篇
  2000年   14篇
  1999年   7篇
  1998年   16篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   9篇
  1992年   5篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   10篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有526条查询结果,搜索用时 15 毫秒
91.
92.
N‐glycosylation of proteins is one of the most important post‐translational modifications that occur in various organisms, and is of utmost importance for protein function, stability, secretion, and loca‐lization. Although the N‐linked glycosylation pathway of proteins has been extensively characterized in mammals and plants, not much information is available regarding the N‐glycosylation pathway in algae. We studied the α 1,3‐glucosidase glucosidase II (GANAB) glycoenzyme in a red marine microalga Porphyridium sp. (Rhodophyta) using bioinformatic and biochemical approaches. The GANAB‐gene was found to be highly conserved evolutionarily (compo‐sed of all the common features of α and β subunits) and to exhibit similar motifs consistent with that of homolog eukaryotes GANAB genes. Phylogenetic analysis revealed its wide distribution across an evolutionarily vast range of organisms; while the α subunit is highly conserved and its phylogenic tree is similar to the taxon evolutionary tree, the β subunit is less conserved and its pattern somewhat differs from the taxon tree. In addition, the activity of the red microalgal GANAB enzyme was studied, including functional and biochemical characterization using a bioassay, indicating that the enzyme is similar to other eukaryotes ortholog GANAB enzymes. A correlation between polysaccharide production and GANAB activity, indicating its involvement in polysaccharide biosynthesis, is also demonstrated. This study represents a valuable contribution toward understanding the N‐glycosylation and polysaccharide biosynthesis pathways in red microalgae.  相似文献   
93.
94.
The acute inflammatory response, triggered by a variety of biological or physical stresses on an organism, is a delicate system of checks and balances that, although aimed at promoting healing and restoring homeostasis, can result in undesired and occasionally lethal physiological responses. In this work, we derive a reduced conceptual model for the acute inflammatory response to infection, built up from consideration of direct interactions of fundamental effectors. We harness this model to explore the importance of dynamic anti-inflammation in promoting resolution of infection and homeostasis. Further, we offer a clinical correlation between model predictions and potential therapeutic interventions based on modulation of immunity by anti-inflammatory agents.  相似文献   
95.
The gonadal steroids estrogen and progesterone have been shown to have neuroprotective properties against various neurodegenerative conditions. Excessive concentrations of glutamate have been found to exert neurotoxic properties. We hypothesize that estrogen and progesterone provide neuroprotection by the autoregulation of blood and brain glutamate levels. Venous blood samples (10 ml) were taken from 31 men and 45 women to determine blood glutamate, estrogen, progesterone, glucose, glutamate-pyruvate transaminase (GPT), and glutamate-oxaloacetate transaminase (GOT) levels, collected on Days 1, 7, 12, and 21 of the female participants' menstrual cycle. Blood glutamate concentrations were higher in men than in women at the start of menstruation (P < 0.05). Blood glutamate levels in women decreased significantly on Days 7 (P < 0.01), 12 (P < 0.001), and 21 (P < 0.001) in comparison with blood glutamate levels on Day 1. There was a significant decrease in blood glutamate levels on Days 12 (P < 0.001) and 21 (P < 0.001) in comparison with blood glutamate levels on Day 7. Furthermore, there was an increase in blood glutamate levels on Day 21 compared with Day 12 (P < 0.05). In women, there were elevated levels of estrogen on Days 7 (P < 0.05), 12, and 21 (P < 0.001), and elevated levels of progesterone on Days 12 and 21 (P < 0.001). There were no differences between men and women with respect to blood glucose concentrations. Concentrations of GOT (P < 0.05) and GPT (P < 0.001) were significantly higher in men than in women during the entire cycle. The results of this study demonstrate that blood glutamate levels are inversely correlated to levels of plasma estrogen and progesterone.  相似文献   
96.
Inflammation and airway remodeling occur in a variety of airway diseases. Modeling aspects of the inflammatory and fibrotic processes following repeated exposure to particulate matter may provide insights into a spectrum of airway diseases, as well as prevention/treatment strategies. An agent-based model (ABM) was created to examine the response of an abstracted population of inflammatory cells (nominally macrophages, but possibly including other inflammatory cells such as lymphocytes) and cells involved in remodeling (nominally fibroblasts) to particulate exposure. The model focused on a limited number of relevant interactions, specifically those among macrophages, fibroblasts, a pro-inflammatory cytokine (TNF-α), an anti-inflammatory cytokine (TGF-β1), collagen deposition, and tissue damage. The model yielded three distinct states that were equated with (1) self-resolving inflammation and a return to baseline, (2) a pro-inflammatory process of localized tissue damage and fibrosis, and (3) elevated pro- and anti-inflammatory cytokines, persistent tissue damage, and fibrosis outcomes. Experimental results consistent with these predicted states were observed in histology sections of lung tissue from mice exposed to particulate matter. Systematic in silico studies suggested that the development of each state depended primarily upon the degree and duration of exposure. Thus, a relatively simple ABM resulted in several, biologically feasible, emergent states, suggesting that the model captures certain salient features of inflammation following exposure of the lung to particulate matter. This ABM may hold future utility in the setting of airway disease resulting from inflammation and fibrosis following particulate exposure.  相似文献   
97.
Defects in the trafficking of apical membrane proteins in polarized epithelial cells are often associated with diseases, including cystic fibrosis, Liddle's syndrome, nephrogenic diabetes insipidus and Dubin-Johnson syndrome. In recent years, we have learned much about the specialized apical trafficking pathways in polarized cells. Many laboratories have identified signals that direct proteins within these pathways and have defined protein interactions that mediate specific steps in the sorting and stabilization of these proteins. In addition, many cytosolic proteins, including lipid kinases, GTPases, ATPases and scaffolding/adaptor proteins that lack enzymatic activity, regulate the trafficking of proteins through these pathways. Recent advances in the field include the role of small GTPases, unconventional myosins and lipid kinases in apical endocytosis and transcytosis, and the identification of PDZ proteins that regulate apical membrane trafficking of receptors, transporters and ion channels.  相似文献   
98.
99.
People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to “better” vs. “worse” outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU.  相似文献   
100.
Myocardial ischemia is transmurally heterogeneous where the subendocardium is at higher risk. Stenosis induces reduced perfusion pressure, blood flow redistribution away from the subendocardium, and consequent subendocardial vulnerability. We propose that the flow redistribution stems from the higher compliance of the subendocardial vasculature. This new paradigm was tested using network flow simulation based on measured coronary anatomy, vessel flow and mechanics, and myocardium-vessel interactions. Flow redistribution was quantified by the relative change in the subendocardial-to-subepicardial perfusion ratio under a 60-mmHg perfusion pressure reduction. Myocardial contraction was found to induce the following: 1) more compressive loading and subsequent lower transvascular pressure in deeper vessels, 2) consequent higher compliance of the subendocardial vasculature, and 3) substantial flow redistribution, i.e., a 20% drop in the subendocardial-to-subepicardial flow ratio under the prescribed reduction in perfusion pressure. This flow redistribution was found to occur primarily because the vessel compliance is nonlinear (pressure dependent). The observed thinner subendocardial vessel walls were predicted to induce a higher compliance of the subendocardial vasculature and greater flow redistribution. Subendocardial perfusion was predicted to improve with a reduction of either heart rate or left ventricular pressure under low perfusion pressure. In conclusion, subendocardial vulnerability to a acute reduction in perfusion pressure stems primarily from differences in vascular compliance induced by transmural differences in both extravascular loading and vessel wall thickness. Subendocardial ischemia can be improved by a reduction of heart rate and left ventricular pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号