首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8161篇
  免费   536篇
  国内免费   4篇
  8701篇
  2024年   9篇
  2023年   23篇
  2022年   106篇
  2021年   157篇
  2020年   87篇
  2019年   119篇
  2018年   163篇
  2017年   157篇
  2016年   226篇
  2015年   430篇
  2014年   433篇
  2013年   514篇
  2012年   721篇
  2011年   625篇
  2010年   398篇
  2009年   366篇
  2008年   484篇
  2007年   508篇
  2006年   454篇
  2005年   393篇
  2004年   385篇
  2003年   325篇
  2002年   285篇
  2001年   249篇
  2000年   230篇
  1999年   165篇
  1998年   62篇
  1997年   54篇
  1996年   34篇
  1995年   34篇
  1994年   21篇
  1993年   21篇
  1992年   40篇
  1991年   48篇
  1990年   39篇
  1989年   46篇
  1988年   35篇
  1987年   25篇
  1986年   25篇
  1985年   31篇
  1984年   20篇
  1983年   17篇
  1981年   9篇
  1979年   11篇
  1978年   13篇
  1977年   10篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
排序方式: 共有8701条查询结果,搜索用时 0 毫秒
71.
72.

The effects of ΔPb-CATH4, a cathelicidin derived from Python bivittatus, were evaluated against Staphylococcus aureus-infected wounds in mice. These effects were comparable to those of classical antibiotics. ΔPb-CATH4 was resistant to bacterial protease but not to porcine trypsin. A reduction in the level of inflammatory cytokines and an increase in the migration of immune cells was observed in vitro. Thus, ΔPb-CATH4 can promote wound healing by controlling infections including those caused by multidrug-resistant bacteria via its immunomodulatory effects.

  相似文献   
73.
Drought stress has detrimental effects on plants. Although the abscisic acid (ABA)‐mediated drought response is well established, defensive mechanisms to cope with dehydration‐induced proteotoxicity have been rarely studied. DRR1 was identified as an Arabidopsis drought‐induced gene encoding an ER‐localized RING‐type E3 Ub ligase. Suppression of DRR1 markedly reduced tolerance to drought and proteotoxic stress without altering ABA‐mediated germination and stomatal movement. Proteotoxicity‐ and dehydration‐induced insoluble ubiquitinated protein accumulation was more obvious in DRR1 loss‐of‐function plants than in wild‐type plants. These results suggest that DRR1 is involved in an ABA‐independent drought stress response possibly through the mitigation of dehydration‐induced proteotoxic stress.  相似文献   
74.
IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis.  相似文献   
75.
76.
Adult human dental pulp stem cells (hDPSCs) are a unique population of precursor cells those are isolated from postnatal dental pulp and have the ability to differentiate into a variety of cell types utilized for the formation of a reparative dentin-like complex. Using LC-MS/MS proteomics approaches, we identified the proteins secreted from the differentiating hDPSCs in mineralization media. Lysyl oxidase-like 2 (LOXL2) was identified as a protein that was down-regulated in the hDPSCs that differentiate into odontoblast-like cells. The role of LOXL2 has not been studied in dental pulp stem cells. LOXL2 mRNA levels were reduced in differentiating hDPSCs, whereas the levels of other LOX family members including LOX, LOXL1, LOXL3, and LOXL4, are increased. The protein expression and secretion levels of LOXL2 were also decreased during odontogenic differentiation. Recombinant LOXL2 protein treatment to hDPSCs resulted in a dose-dependent decrease in the early differentiation and the mineralization accompanying with the lower levels of odontogenic markers such as DSPP, DMP-1 and ALP. These results suggest that LOXL2 has a negative effect on the differentiation of hDPSCs and blocking LOXL2 can promote the hDPSC differentiation to odontoblasts.  相似文献   
77.
The angiopoietin/Tie2 system is an important regulator of angiogenesis and inflammation. In addition to its functions in endothelial cells, Tie2 expression on non-endothelial cells allows for angiopoietin ligands to stimulate the cells. Although Ang1 is a strong Tie2 receptor agonist, little is known regarding the effect of Ang1 on non-endothelial cells, such as monocytes and macrophages. In this study, we found that Ang1 functionally binds to and stimulates monocytes via p38 and Erk1/2 phosphorylation. Ang1-mediated monocyte stimulation is associated with proinflammatory cytokine TNF-α expression. We also determined that Ang1 switched macrophage differentiation toward a pro-inflammatory phenotype, even in the presence of an anti-inflammatory mediator. These findings suggest that Ang1 plays a role in stimulating pro-inflammatory responses and could provide a new strategy by which to manage inflammatory responses.  相似文献   
78.
Pungency in pepper (Capsicum annuum L.) has unique characteristics due to the alkaloid compound group, capsaicinoids, which includes capsaicin. Although capsaicinoids have been proved to have pharmacological and physiological effects on human health, the application of capsaicinoids has been limited because of their pungency. Capsinoids found in non-pungent peppers share closely related structures with capsaicinoids and show similar biological effects. Previous studies demonstrated that mutations in the p-AMT gene were related to the production of capsinoids; however, the pathway of capsinoid synthesis has not yet been fully elucidated. In this study, we performed genetic analysis to determine the mechanism of capsinoid synthesis using a F6 recombinant inbred line population. In this population, the presence/absence of capsinoids co-segregated with the genotype of the Pun1 locus, without exception. In addition, we screened the patterns of capsinoid synthesis and the correlation between the Pun1 locus and capsinoid synthesis in p-AMT mutant accessions. In Capsicum germplasms, we selected amino-acid-substituted mutants in the PLP binding domain of the p-AMT gene. Capsinoids were not synthesized with the recessive pun1 gene, regardless of the p-AMT genotype, and no relationship was found between p-AMT mutant type and capsinoid content. We concluded that the Pun1 gene, which is responsible for capsaicinoid synthesis, also controls capsinoid synthesis.  相似文献   
79.
80.
Background: Colorectal carcinogenesis is believed to be a multi-stage process that originates with a localized adenoma, which linearly progresses to an intra-mucosal carcinoma, to an invasive lesion, and finally to metastatic cancer. This progression model is supported by tissue culture and animal model studies, but it is difficult to reconcile with several well-established observations, principally among these are that up to 25% of early stage (Stage I/II), node-negative colorectal cancer (CRC) develop distant metastasis, and that circulating CRC cells are undetectable in peripheral blood samples of up to 50% of patients with confirmed metastasis, but more than 30% of patients with no detectable metastasis exhibit such cells. The mechanism responsible for this diverse behavior is unknown, and there are no effective means to identify patients with pending, or who are at high risk for, developing metastatic CRC.Novel findings: Our previous studies of human breast and prostate cancer have shown that cancer invasion arises from the convergence of a tissue injury, the innate immune response to that injury, and the presence of tumor stem cells within tumor capsules at the site of the injury. Focal degeneration of a capsule due to age or disease attracts lymphocyte infiltration that degrades the degenerating capsules resulting in the formation of a focal disruption in the capsule, which selectively favors proliferating or “budding” of the underlying tumor stem cells. Our recent studies suggest that lymphocyte infiltration also triggers metastasis by disrupting the intercellular junctions and surface adhesion molecules within the proliferating cell buds causing their dissociation. Then, lymphocytes and tumor cells are conjoined through membrane fusion to form tumor-lymphocyte chimeras (TLCs) that allows the tumor stem cell to avail itself of the lymphocyte''s natural ability to migrate and breach cell barriers in order to intravasate and to travel to distant organs. Our most recent studies of human CRC have detected nearly identical focal capsule disruptions, lymphocyte infiltration, budding cells, and the formation of TLCs. Our studies have further shown that age- and type-matched node-positive and -negative CRC have a significantly different morphological and immunohistochemical profile and that the majority of lymphatic ducts with disseminated cells are located within the mucosa adjacent to morphologically normal appearing epithelial structures that express a stem cell-related marker.New hypothesis: Based on these findings and the growth patterns of budding cells revealed by double immunohistochemistry, we further hypothesize that metastatic spread is an early event of carcinogenesis and that budding cells overlying focal capsule disruptions represent invasion- and metastasis-initiating cells that follow one of four pathways to progress: (1) to undergo extensive in situ proliferation leading to the formation of tumor nests that subsequently invade the submucosa, (2) to migrate with associated lymphocytes functioning as “seeds” to grow in new sites, (3) to migrate and intravasate into pre-existing vascular structures by forming TLCs, or (4) to intravasate into vascular structures that are generated by the budding cells themselves. We also propose that only node-positive cases harbor stem cells with the potential for multi-lineage differentiation and unique surface markers that permit intravasation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号