首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15636篇
  免费   1196篇
  国内免费   5篇
  16837篇
  2024年   23篇
  2023年   61篇
  2022年   206篇
  2021年   316篇
  2020年   204篇
  2019年   293篇
  2018年   439篇
  2017年   340篇
  2016年   570篇
  2015年   873篇
  2014年   1006篇
  2013年   1045篇
  2012年   1440篇
  2011年   1353篇
  2010年   868篇
  2009年   745篇
  2008年   982篇
  2007年   875篇
  2006年   749篇
  2005年   716篇
  2004年   668篇
  2003年   562篇
  2002年   475篇
  2001年   304篇
  2000年   288篇
  1999年   210篇
  1998年   97篇
  1997年   71篇
  1996年   49篇
  1995年   69篇
  1994年   56篇
  1993年   43篇
  1992年   78篇
  1991年   75篇
  1990年   79篇
  1989年   52篇
  1988年   50篇
  1987年   40篇
  1986年   35篇
  1985年   46篇
  1984年   34篇
  1983年   29篇
  1982年   25篇
  1981年   25篇
  1979年   24篇
  1975年   18篇
  1974年   18篇
  1973年   23篇
  1971年   28篇
  1968年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The cellular defense system (including glutathione, glutathione-related enzymes, antioxidant and redox enzymes) plays a crucial role in cell survival and growth in aerobic organisms. To understand its physiological role in tumor cells, the glutathione content and related enzyme activities in the human normal hepatic cell line, Chang and human hepatoma cell line, HepG2, were systematically measured and compared. Superoxide dismutase, catalase, and glutathione peroxidase activities are 2.8-, 4.3-, and 2.9-fold higher in HepG2 cells than in Chang cells. Total glutathione content is also about 1.4-fold higher in HepG2, which is supported by significant increases in gamma-glutamylcysteine synthetase and glutathione synthetase activities. Two other glutathione-related enzymes, glutathione reductase and gamma-glutamyltranspeptidase, are upregulated in HepG2 cells. However, thioredoxin reductase and glutathione S-transferase activities are significantly lower in HepG2 cells. These results propose that defense-related enzymes are largely modulated in tumor cells, which might be linked to their growth and maintenance.  相似文献   
992.
The human papilloma virus-type 16 (HPV-16) E6 and E7 proteins interact with the p53 and pRb tumor suppressor proteins, respectively. The effect of E6 or E7 expression on UV irradiation (5 and 20 J/m2)-induced genotoxic injury of confluent primary murine astrocytes was determined. Retroviral vectors were used to overexpress E6 and E7. Astrocytes expressing E7 showed increased vulnerability to UV-induced apoptosis while E6 over expressing astrocytes were protected from the same insults. Cell death in the E7 overexpressing cells was apoptotic because it showed DNA ladders, activation of caspase-3, formation of apoptotic bodies and decreased DNA content to less than the G0 level. After UV-irradiation the level of E2F1 in E7-expressing astrocytes was higher than E6-, LXSN- or mock-infected cells, and caspase-3 was activated to a greater extent. E7-expressing astrocytes showed the highest levels of Bax under normal growth conditions. The mitochondrial membrane potential of E7-expressing astrocytes was depolarized by 90% after UV-irradiation while the depolarization in control cells was about 50%. E6 overexpression decreased while E7 overexpression increased UV-induced astrocyte apoptosis.  相似文献   
993.
Many aspects of epigenetic phenomena have been elucidated via studies of transposable elements. An active transposable element frequently loses its ability to mobilize and goes into an inactive state during development. In this study, we describe the cyclic activity of a maize transposable element dissociation (Ds) in rice. In rice genome, Ds undergoes the spontaneous loss of mobility. However, an inactive state of Ds can be changed into an active state during tissue culture. The recovery of mobility accompanies not only changes in the methylation patterns of the terminal region of Ds, but also alteration in the steady state level of the activator (Ac) mRNA that is expressed by a constitutive CaMV 35S promoter. Furthermore, the Ds-reactivation process is not random, but stage-specific during plantlet regeneration. Our findings have expanded previous observations on Ac reactivation in the tissue culture of maize.  相似文献   
994.
Carnosine, homocarnosine, and anserine are present in high concentrations in the muscle and brain of many animals and humans. Previous studies showed that these compounds have an antioxidant function. We investigated the protective effects of carnosine and related compounds on the modification of human ceruloplasmin that is induced by H2O2. Carnosine, homocarnosine, and anserine significantly inhibited the fragmentation and inactivation of ceruloplasmin that is induced by H2O2. All three compounds also inhibited the release of copper ion from protein, and the formation of hydroxyl radicals in the ceruloplasmin/H2O2 system. These compounds inhibited the fragmentation of human serum albumin that is induced by the copper-catalyzed oxidation system, as well as by the iron-catalyzed oxidation system. These results suggest that carnosine, homocarnosine, and anserine might protect ceruloplasmin against H2O2-mediated oxidative damage through a combination of copper chelation and free radical scavenging.  相似文献   
995.
The expression of the N-type voltage-gated calcium channel alpha1B gene is restricted to neurons by a 5'-upstream region (-3992 to -1788) that contains negative regulatory element(s) that are active in non-neuronal cells. A 39 bp DNA element, which is repeated nine times in a head-to-tail fashion, was found within the same region. To examine whether this direct repeat (DR) may function as a negatively acting cis-regulatory element, several fusion plasmids, DR-110alpha1BLUC (1X), DR-SV40LUC (IX, 2X), in which one or two copies of the DR fragment were subcloned upstream of the homologous and heterologous promoters, were transiently transfected into HeLa and NS20Y cells. The promoter activity of DR-110alpha1BLUC (1X) decreased to approximately 17% of the 110alph(a1B)LUC construct in HeLa cells. The expression of the DR-SV40LUC (1X) and DR-SV40LUC (2X) plasmids was also reduced to 50 to 23% of the levels that were observed in the pGL2-Promoter in the same cells. However, no repression of the DR constructs was observed in NS20Y cells. An electrophoretic mobility shift assay showed that two DR-specific complexes were detected in HeLa cells, but not in NS20Y cells. In addition, Southwestern blotting revealed the presence of approximately 33 and 43 kDa proteins in HeLa cells. Overall, these results suggest that a 39 bp DNA element might act as repressor in non-neuron cells through the specific interactions of the DNA-proteins.  相似文献   
996.
Taz1p is the fission yeast orthologue of human TRF2, a telomeric repeat-binding protein. Delta(taz1) mutants are defective in telomeric silencing, telomere length control, and meiotic recombination events. A recent report demonstrated that the human Rap1p homolog (hRap1) is recruited to telomere by interaction with TRF2, arguing that the telomere control mechanism of higher eukaryotes is distinct from that of the budding yeast. Taz1p showed a significant similarity to human TRF2, but not with the budding yeast Rap1p (scRap1p). This suggests that Taz1p and TRF2 share common features in telomere regulation. To assess the roles of Taz1p in telomere-related functions in detail, we attempted to identify a protein(s) that interacts with Taz1p by using two-hybrid screening. Interestingly, the sequence analysis of a positive clone revealed a perfect match with a Rap1 homolog in S. pombe (spRap1), which showed a significant homology with scRap1p and hRap1p. Here we show that the spRap1 deficiency in haploid cells is viable, which results in increased telomere length regulation, disruption of telomere silencing, and aberrant meiosis (like the delta(taz1) mutant). This suggests that spRap1p might be recruited to the telomere by Taz1p and play crucial roles in telomere function. Interestingly, the delta(rap1) mutants in fission yeast are defective only for telomere silencing. Therefore, the role of spRap1p may be distinct from that of scRap1p, which is involved in the silencing at both the telomere and mating type locus. Our data, therefore, suggest that the regulation mechanisms of telomere in fission yeast resemble that of higher eukaryotic cells rather than the budding yeast.  相似文献   
997.
Kim KB  Choi YH  Kim IK  Chung CW  Kim BJ  Park YM  Jung YK 《Cytokine》2002,20(6):283-288
Epithelial cell apoptosis triggered cooperatively by multiple cytokines contributes to the injury induced by inflammatory responses in the lung and elsewhere. Here we show that interferon-gamma (IFN-gamma) sensitizes A549 cells, human lung epithelial cells, to cytokine-mediated apoptosis by upregulating caspase-8 expression. Pretreating the cells with IFN-gamma potentiated Fas- and TNF-related apoptosis inducing ligand (TRAIL)-induced cell death, but other forms of apoptosis, not mediated via receptors, were unaffected. Western blotting and inhibitor assays showed that IFN-gamma selectively increased expression of caspases-7 and -8, but not caspases-2, -3, -9, or -10, as a necessary step leading to apoptosis. Assaying promoter activity using a luciferase reporter gene indicated that an IFN-gamma response element was located in the 5'-flanking region of the caspase-8 gene, spanning positions -227 to -219. Taken together, these findings suggest that IFN-gamma potentiates Fas- and TRAIL-mediated apoptosis by increasing caspase-8 expression via an IFN-gamma response element in A549 cells.  相似文献   
998.
It is generally assumed that the putative compound I (cpd I) in cytochrome P450 should contain the same electron and spin distribution as is observed for cpd I of peroxidases and catalases and many synthetic cpd I analogues. In these systems one oxidation equivalent resides on the Fe(IV)=O unit (d(4), S=1) and one is located on the porphyrin (S'=1/2), constituting a magnetically coupled ferryl iron-oxo porphyrin pi-cation radical system. However, this laboratory has recently reported detection of a ferryl iron (S=1) and a tyrosyl radical (S'=1/2), via M?ssbauer and EPR studies of 8 ms-reaction intermediates of substrate-free P450cam from Pseudomonas putida, prepared by a freeze-quench method using peroxyacetic acid as the oxidizing agent [Schünemann et al., FEBS Lett. 479 (2000) 149]. In the present study we show that under the same reaction conditions, but in the presence of the substrate camphor, only trace amounts of the tyrosine radical are formed and no Fe(IV) is detectable. We conclude that camphor restricts the access of the heme pocket by peroxyacetic acid. This conclusion is supported by the additional finding that binding of camphor and metyrapone inhibit heme bleaching at room temperature and longer reaction times, forming only trace amounts of 5-hydroxy-camphor, the hydroxylation product of camphor, during peroxyacetic acid oxidation. As a control we performed freeze-quench experiments with chloroperoxidase from Caldariomyces fumago using peroxyacetic acid under the identical conditions used for the substrate-free P450cam oxidations. We were able to confirm earlier findings [Rutter et al., Biochemistry 23 (1984) 6809], that an antiferromagnetically coupled Fe(IV)=O porphyrin pi-cation radical system is formed. We conclude that CPO and P450 behave differently when reacting with peracids during an 8-ms reaction time. In P450cam the formation of Fe(IV) is accompanied by the formation of a tyrosine radical, whereas in CPO Fe(IV) formation is accompanied by the formation of a porphyrin radical.  相似文献   
999.
1000.
The kdpFABC operon, coding for a high-affinity K(+)-translocating P-type ATPase, is expressed in Escherichia coli as a backup system during K(+) starvation or an increase in medium osmolality. Expression of the operon is regulated by the membrane-bound sensor kinase KdpD and the cytosolic response regulator KdpE. From a nitrogen-fixing cyanobacterium, Anabaena sp. strain L-31, a kdpDgene was cloned (GenBank accession no. AF213466) which codes for a KdpD protein (365 amino acids) that lacks both the transmembrane segments and C-terminal transmitter domain and thus is shorter than E. coli KdpD. A chimeric kdpD gene was constructed and expressed in E. coli coding for a protein (Anacoli KdpD), in which the first 365 amino acids of E. coli KdpD were replaced by those from Anabaena KdpD. In everted membrane vesicles, this chimeric Anacoli KdpD protein exhibited activities, such as autophosphorylation, transphosphorylation and ATP-dependent dephosphorylation of E. coli KdpE, which closely resemble those of the E. coli wild-type KdpD. Cells of E. coli synthesizing Anacoli KdpD expressed kdpFABC in response to K(+) limitation and osmotic upshock. The data demonstrate that Anabaena KdpD can interact with the E. coliKdpD C-terminal domain resulting in a protein that is functional in vitro as well as in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号