首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5080篇
  免费   378篇
  国内免费   3篇
  2024年   4篇
  2023年   19篇
  2022年   45篇
  2021年   92篇
  2020年   75篇
  2019年   97篇
  2018年   144篇
  2017年   107篇
  2016年   176篇
  2015年   258篇
  2014年   332篇
  2013年   362篇
  2012年   466篇
  2011年   451篇
  2010年   274篇
  2009年   254篇
  2008年   319篇
  2007年   318篇
  2006年   250篇
  2005年   234篇
  2004年   252篇
  2003年   193篇
  2002年   164篇
  2001年   102篇
  2000年   105篇
  1999年   71篇
  1998年   28篇
  1997年   30篇
  1996年   21篇
  1995年   20篇
  1994年   17篇
  1993年   12篇
  1992年   19篇
  1991年   25篇
  1990年   18篇
  1989年   12篇
  1988年   13篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1977年   5篇
  1976年   5篇
  1975年   5篇
  1973年   4篇
  1971年   5篇
  1967年   3篇
排序方式: 共有5461条查询结果,搜索用时 15 毫秒
121.
An obligate methanol-utilizing bacterium, Methylomonas sp. YK 1, was isolated and used as a cytochrome c producer. The strain was mutagenized so as to be resistant to metabolic inhibitors related to the function of cytochrome c. The strain, YK 56, which was derived as a KCN-resistant mutant contained 3 times the cellular level of cytochrome c compared to the parent strain. Optimization of the culture conditions for the mutant to enhance the cytochrome c productivity was performed. Peptone, succinate, l-malate or FeSO4 · 7H2O increased the productivity when added to the culture medium. Under the optimal culture conditions, strain YK 56 produced about 60 mg cytochrome c per liter when methanol and peptone were fed to the medium during the cultivation.  相似文献   
122.
Brassinosteroid (BR) and auxin co-regulate plant growth in a process termed cross-talking. Based on the assumption that their signal transductions are partially shared, inhibitory chemicals for both signal transductions were screened from a commercially available library. A chemical designated as NJ15 (ethyl 2-[5-(3,5-dichlorophenyl)-1,2,3,4-tetrazole-2-yl]acetate) diminished the growth promotion of both adzuki bean epicotyls and Arabidopsis seedlings, by the application of either BR or auxin. To understand its target site(s), bioassays with a high dependence on the signal transduction of either BR (BR-signaling) or auxin (AX-signaling) were performed. NJ15 inhibited the photomorphogenesis of Arabidopsis seedlings grown in the dark, which mainly depends on BR-signaling, while NJ15 also inhibited their gravitropic responses mainly depending on AX-signaling. On the study for the structure–activity relationships of NJ15 analogs, they showed strong correlations on the inhibitory profiles between BR- and AX-signalings. These correlations imply that NJ15 targets the downstream pathway after the integration of BR- and AX-signals.  相似文献   
123.
The matrix metalloproteinases (MMPs) are well known to responsible for the degradation of extracellular matrix (ECM) during tissue remodelling such as wound healing, metamorphosis, and regeneration. In present study, gelatinase activities were investigated in normal and retinoic acid (RA)-treated limb regenerates. During the early phase of limb regeneration, gelatinase activities increased greatly, and RA caused the enhanced and prolonged gelatinase activities. We also isolated full length of Hynobius MMP-9, and its spatial and temporal expression profiles were examined in normal, RA-treated, and denervated limb regenerates. Whole mount in situ hybridization showed that the expression of MMP-9 increased in the wound epidermis at the wound healing stage and early phase of dedifferentiation stage. In addition, RA enhanced remarkably its expression both in terms of level and duration in the wound epidermis. However, expression signal of MMP-9 was barely detectable in denervated in limb regenerates. Our results may indicate that MMP-9 plays important role(s) in the dedifferentiation process by participating in ECM degradation and enhancement of MMP-9 expression and activity might be closely related to RA-evoked pattern duplication.  相似文献   
124.
125.
The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers.  相似文献   
126.
In hepatitis C Virus (HCV) high-risk groups, HCV-specific T cell responses have been detected in seronegative, aviremic persons who have no evidence of HCV infection. Herein, we investigated functional profiles of HCV-specific T-cell responses in seronegative, aviremic patients of a HCV high-risk group. Seventy seven hemodialysis patients with chronic renal disease were analyzed by IFN-γ ELISpot assays, and eight of 71 (11.3%) seronegative, aviremic patients displayed HCV-specific T-cell responses. Their HCV-specific memory T cells were characterized by assessing cytokine polyfunctionality, known to provide antiviral protection. By intracellular staining of IFN-γ, TNF-α, IL-2 and MIP-1β, we identified two distinct populations in the seronegative, aviremic patients: polyfunctional responders and TNF-α-predominant responders. In further analysis, occult HCV infection was excluded as a cause of the HCV-specific T cell response via secondary nested RT-PCR of HCV RNA in peripheral blood mononuclear cell samples. HCV-specific T cells targeted multiple epitopes including non-structural proteins in a single patient, implying that their T cells might have been primed by HCV proteins synthesized within the host. We conclude that HCV-specific memory T cells of seronegative, aviremic patients arise from authentic HCV replication in the host, but not from current occult HCV infection. By functional pattern of HCV-specific T cells, there are two distinct populations in these patients: polyfunctional responders and TNF-α-predominant responders.  相似文献   
127.
Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer’s disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4’s cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19–21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7–8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.  相似文献   
128.

Objective:

Visceral obesity contributes to the development of obesity‐related disorders such as diabetes, hyperlipidemia, and fatty liver disease, as well as cardiovascular diseases. In this study, we determined whether topical application of capsaicin can reduce fat accumulation in visceral adipose tissues.

Methods and Results:

We first observed that topical application of 0.075% capsaicin to male mice fed a high‐fat diet significantly reduced weight gain and visceral fat. Fat cells were markedly smaller in the mesenteric and epididymal adipose tissues of mice treated with capsaicin cream. The capsaicin treatment also lowered serum levels of fasting glucose, total cholesterol, and triglycerides. Immunoblot analysis and RT‐PCR revealed increased expression of adiponectin and other adipokines including peroxisome proliferator‐activated receptor (PPAR) α, PPARγ, visfatin, and adipsin, but reduced expression of tumor necrosis factor‐α and IL‐6.

Conclusions:

These results indicate that topical application of capsaicin to obese mice limits fat accumulation in adipose tissues and may reduce inflammation and increase insulin sensitivity.  相似文献   
129.
Material‐independent adhesive action derived from polycatechol structures has been intensively studied due to its high applicability in surface engineering. Here, we for the first time demonstrate that a dihydroxynaphthalene‐based fungal melanin mimetic, which exhibit a catechol‐free structure, can act as a coating agent for material‐independent surface modifications on the nanoscale. This mimetic was made by using laccase to catalyse the oxidative polymerization of specifically 2,7‐dihydroxynaphthalene. Analyses of the product of this reaction, using Fourier transform infrared‐attenuated total reflectance and X‐ray photoelectron spectroscopy, bactericidal action, charge‐dependent sorption behaviour, phenol content, Zeta potential measurements and free radical scavenging activity, yielded results consistent with it containing hydroxyphenyl groups. Moreover, nuclear magnetic resonance analyses of the product revealed that C‐O coupling and C‐C coupling were the main mechanisms for its synthesis, thus clearly excluding a catechol structure in the polymerization. This product, termed poly(2,7‐DHN), was successfully deposited onto a wide variety of solid surfaces, including metals, polymeric materials, ceramics, biosurfaces and mineral complexes. The melanin‐like polymerization could be used to co‐immobilize other organic molecules, forming functional surfaces. In addition, the hydroxyphenyl group contained in the coated poly(2,7‐DHN) induced secondary metal chelation/reduction and adhesion with proteins, suggesting the potential of this poly(2,7‐DHN) layer to serve as a platform material for a variety of surface engineering applications. Moreover, the novel physicochemical properties of the poly(2,7‐DHN) illuminate its potential applications as bactericidal, radical‐scavenging and pollutant‐sorbing agents.  相似文献   
130.
Al is introduced into a compositionally graded cathode with average composition of Li[Ni0.61Co0.12Mn0.27]O2 (FCG61) whose Ni and Mn concentrations are designed to vary continuously within the cathode particle. The Al‐substituted full concentration gradient (Al‐FCG61) cathode is tested for 3000 cycles in a full‐cell, mainly to gauge its viability for daily charge/discharge cycles during the service life of electric vehicles (≈10 years). The Al‐substitution enables the Al‐FCG61 cathode to maintain 84% of its initial capacity even after 3000 cycles. It is demonstrated that the Al‐substitution strengthens the grain boundaries, substantiated by the mechanical strength data, thereby delaying the nucleation of microcracks at the phase boundaries which is shown to be the main reason for the cathode failure during long‐term cycling. It also shows that the Al‐substitution decreases the cation mixing and suppresses the deleterious formation of the secondary phase that likely initiates the microcracks. Unlike an NCA cathode, whose depth of discharge (DOD) must be limited to 60% for long‐term cycling, the proposed Al‐FCG61 cathode is cycled at 100% DOD for 3000 cycles to fully utilize its available capacity for maximum energy density and subsequent reduction in cost of the battery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号