首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   13篇
  国内免费   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1981年   2篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
81.
82.
83.
Nitric oxide induces BNIP3 expression that causes cell death in macrophages   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is involved in many physiological processes and also causes pathological effects by inducing apoptosis. It can enhance or suppress apoptosis depending on its concentration and the cell type involved. In this report, we used cDNA microarray analysis to show that SNAP, an NO donor, strongly induces Bcl-2/adenovirus E1B 19kDa-interacting protein 3 (BNIP3) in macrophages. BNIP3 is a mitochondrial pro-apoptotic protein that contains a Bcl-2 homology 3 domain and a COOH-terminal transmembrane (TM) domain. Macrophages activated by LPS/IFN-gamma produce nitric oxide synthase 2 (NOS2) and release endogenous NO. Expression of BNIP3 was also induced in macrophages by LPS/IFN-gamma, and the induction was blocked by a NOS2 inhibitor, S-methyl-isothiourea. Peritoneal macrophages from NOS2-null mice failed to produce BNIP3 in response to LPS/IFN-gamma. We conclude that BNIP3 expression in macrophages is controlled by the intracellular level of nitric oxide. Overexpression of BNIP3 but not of BNIP3 deltaTM, a BNIP3 mutant without the TM domain and C-terminal tail, led to apoptosis of the cells. Promoter analysis showed that the region between -281 and -1 of the 5'-upstream enhancer region of murine BNIP3 was sufficient for NO-dependent expression of BNIP3.  相似文献   
84.
85.
A recent study concluded that omnivorous plankton will shift from predatory to herbivorous feeding with climate warming, as consumers require increased carbon:phosphorous in their food. Although this is an appealing hypothesis, we suggest the conclusion is unfounded, based on the data presented, which seem in places questionable and poorly interpreted.  相似文献   
86.
Reichner  JS; Helgemo  SL; Hart  GW 《Glycobiology》1998,8(12):1173-1182
The ability of particular cell surface glycoproteins to recycle and become exposed to individual Golgi enzymes has been demonstrated. This study was designed to determine whether endocytic trafficking includes significant reentry into the overall oligosaccharide processing pathway. The Lec1 mutant of Chinese hamster ovary (CHO) cells lack N - acetylglucosaminyltransferase I (GlcNAc-TI) activity resulting in surface expression of incompletely processed Man5GlcNAc2 N -linked oligosaccharides. An oligosaccharide tracer was created by exoglycosylation of cell surface glycoproteins with purified porcine GlcNAc-TI and UDP-[3H]GlcNAc. Upon reculturing, all cell surface glycoproteins that acquired [3H]GlcNAc were acted upon by intracellular mannosidase II, the next enzyme in the Golgi processing pathway of complex N -linked oligosaccharides (t1/2= 3-4 h). That all radiolabeled cell surface glycoproteins were included in this endocytic pathway indicates a common intracellular compartment into which endocytosed cell surface glycoproteins return. Significantly, no evidence was found for continued oligosaccharide processing consistent with transit through the latter cisternae of the Golgi apparatus. These data indicate that, although recycling plasma membrane glycoproteins can be reexposed to individual Golgi-derived enzymes, significant reentry into the overall contiguous processing pathway is not evident.   相似文献   
87.
Rush  JS; Waechter  CJ 《Glycobiology》1998,8(12):1207-1213
In the current model for Glc3Man9GlcNAc2-P-P-Dol assembly, Man5GlcNAc2- P-P-Dol, Man-P-Dol, and Glc-P-Dol are synthesized on the cytoplasmic face of the ER and diffuse transversely to the lumenal leaflet where the synthesis of the lipid-bound precursor oligosaccharide is completed. To establish the topological sites of Glc-P-Dol synthesis and the lipid-mediated glucosyltransfer reactions involved in Glc3Man9GlcNAc2-P-P-Dol synthesis in ER vesicles from pig brain, the trypsin-sensitivity of Glc-P-Dol synthase activity and the Glc-P- Dol:Glc0-2Man9GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) was examined in sealed microsomal vesicles. Since ER vesicles from brain do not contain glucose 6-phosphate (Glc 6-P) phosphatase activity, the latency of the lumenally oriented, processing glucosidase I/II activities was used to assess the intactness of the vesicle preparations. Comparative enzymatic studies with sealed ER vesicles from brain and kidney, a tissue that contains Glc 6-P phosphatase, demonstrate the reliability of using the processing glucosidase activities as latency markers for topological studies with microsomal vesicles from non-gluconeogenic tissues lacking Glc 6-P phosphatase. The results obtained from the trypsin-sensitivity assays with sealed microsomal vesicles from brain are consistent with a topological model in which Glc-P-Dol is synthesized on the cytoplasmic face of the ER, and subsequently utilized by the three Glc-P-Dol-mediated GlcTases after "flip-flopping" to the lumenal monolayer.   相似文献   
88.
89.
Salivary dysfunction commonly occurs in many older adults and is considered a physiological phenomenon. However, the genetic changes in salivary glands during aging have not been characterized. The present study analyzed the gene expression profile in salivary glands from accelerated aging klotho deficient mice (klotho?/?, 4 weeks old). Microarray analysis showed that 195 genes were differentially expressed (z‐score > 2 in two independent arrays) in klotho null mice compared to wild‐type mice. Importantly, alpha2‐Na+/K+‐ATPase (Atp1a2), Ca2+‐ATPase (Atp2a1), epidermal growth factor (EGF), and nerve growth factor (NGF), which have been suggested to be regulators of submandibular salivary gland function, were significantly decreased. When a network was constructed from the differentially expressed genes, proliferator‐activated receptor‐γ (PPAR γ), which regulates energy homeostasis and insulin sensitivity, was located at the core of the network. In addition, the expression of genes proposed to regulate various PPAR γ‐related cellular pathways, such as Klk1b26, Egfbp2, Cox8b, Gpx3, Fabp3, EGF, and NGFβ, was altered in the submandibular salivary glands of klotho?/? mice. Our results may provide clues for the identification of novel genes involved in salivary gland dysfunction. Further characterization of these differentially expressed genes will be useful in elucidating the genetic basis of aging‐related changes in the submandibular salivary gland.
  相似文献   
90.
Yook K  Hodgkin J 《Genetics》2007,175(2):681-697
A specific host-pathogen interaction exists between Caenorhabditis elegans and the gram-positive bacterium Microbacterium nematophilum. This bacterium is able to colonize the rectum of susceptible worms and induces a defensive tail-swelling response in the host. Previous mutant screens have identified multiple loci that affect this interaction. Some of these loci correspond to known genes, but many bus genes [those with a bacterially unswollen (Bus) mutant phenotype] have yet to be cloned. We employed Mos1 transposon mutagenesis as a means of more rapidly cloning bus genes and identifying new mutants with altered pathogen response. This approach revealed new infection-related roles for two well-characterized and much-studied genes, egl-8 and tax-4. It also allowed the cloning of a known bus gene, bus-17, which encodes a predicted galactosyltransferase, and of a new bus gene, bus-19, which encodes a novel, albeit ancient, protein. The results illustrate advantages and disadvantages of Mos1 transposon mutagenesis in this system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号