首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1715篇
  免费   149篇
  2023年   5篇
  2022年   9篇
  2021年   26篇
  2020年   18篇
  2019年   18篇
  2018年   30篇
  2017年   26篇
  2016年   33篇
  2015年   83篇
  2014年   87篇
  2013年   88篇
  2012年   104篇
  2011年   92篇
  2010年   69篇
  2009年   71篇
  2008年   101篇
  2007年   102篇
  2006年   110篇
  2005年   109篇
  2004年   95篇
  2003年   92篇
  2002年   89篇
  2001年   80篇
  2000年   70篇
  1999年   58篇
  1998年   17篇
  1997年   14篇
  1996年   13篇
  1995年   12篇
  1994年   13篇
  1993年   9篇
  1992年   21篇
  1991年   13篇
  1990年   16篇
  1989年   11篇
  1988年   7篇
  1987年   6篇
  1986年   9篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1975年   3篇
  1972年   4篇
  1969年   4篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有1864条查询结果,搜索用时 250 毫秒
61.
On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor.  相似文献   
62.
Objective: The objective of this study was to investigate the association among adiposity, insulin resistance, and inflammatory markers [high‐sensitivity C‐reactive protein (hs‐CRP), interleukin (IL)‐6, and tumor necrosis factor (TNF)‐α] and adiponectin and to study the effects of exercise training on adiposity, insulin resistance, and inflammatory markers among obese male Korean adolescents. Research Methods and Procedures: Twenty‐six obese and 14 lean age‐matched male adolescents were studied. We divided the obese subjects into two groups: obese exercise group (N = 14) and obese control group (N = 12). The obese exercise group underwent 6 weeks of jump rope exercise training (40 min/d, 5 d/wk). Adiposity, insulin resistance, lipid profile, hs‐CRP, IL‐6, TNF‐α, and adiponectin were measured before and after the completion of exercise training. Results: The current study demonstrated higher insulin resistance, total cholesterol, LDL‐C levels, triglyceride, and inflammatory markers and lower adiponectin and HDL‐C in obese Korean male adolescents. Six weeks of increased physical activity improved body composition, insulin sensitivity, and adiponectin levels in obese Korean male adolescents without changes in TNF‐α, IL‐6, and hs‐CRP. Discussion: Obese Korean male adolescents showed reduced adiponectin levels and increased inflammatory cytokines. Six weeks of jump rope exercise improved triglyceride and insulin sensitivity and increased adiponectin levels.  相似文献   
63.
Yu  Si-in  Kim  Hyojin  Yun  Dae-Jin  Suh  Mi Chung  Lee  Byeong-ha 《Plant molecular biology》2019,99(1-2):135-148
Plant Molecular Biology - A Kelch repeat F-box containing protein, SMALL AND GLOSSY LEAVES1 (SAGL1) regulates phenylpropanoid biosynthesis as a post-translational regulator for PAL1 (phenylalanine...  相似文献   
64.

AMPA receptors mediate the majority of excitatory glutamatergic transmission in the mammalian brain and are heterotetramers composed of GluA1-4 subunits. Despite genetic studies, the roles of the subunits in synaptic transmission and plasticity remain controversial. To address this issue, we investigated the effects of cell-specific removal of GluA1 in hippocampal CA1 pyramidal neurons using virally-expressed GluA1 shRNA in organotypic slice culture. We show that this shRNA approach produces a rapid, efficient and selective loss of GluA1, and removed?>?80% of surface GluA1 from synapses. This loss of GluA1 caused a modest reduction (up to 57%) in synaptic transmission and when applied in neurons from GluA3 knock-out mice, a similar small reduction in transmission occurred. Further, we found that loss of GluA1 caused a redistribution of GluA2 to synapses that may compensate functionally for the absence of GluA1. We found that LTP was absent in neurons lacking GluA1, induced either by pairing or by a theta-burst pairing protocol previously shown to induce LTP in GluA1 knock-out mice. Our findings demonstrate a critical role of GluA1 in CA1 LTP, but no absolute requirement for GluA1 in maintaining synaptic transmission. Further, our results indicate that GluA2 homomers can mediate synaptic transmission and can compensate for loss of GluA1.

  相似文献   
65.
Bacteria and archaea use the CRISPR-Cas system to fend off invasions of bacteriophages and foreign plasmids. In response, bacteriophages encode anti-CRISPR (Acr) proteins that potently inhibit host Cas proteins to suppress CRISPR-mediated immunity. AcrIE4-F7, which was isolated from Pseudomonas citronellolis, is a fused form of AcrIE4 and AcrIF7 that inhibits both type I-E and type I-F CRISPR-Cas systems. Here, we determined the structure of AcrIE4-F7 and identified its Cas target proteins. The N-terminal AcrIE4 domain adopts a novel α-helical fold that targets the PAM interaction site of the type I-E Cas8e subunit. The C-terminal AcrIF7 domain exhibits an αβ fold like native AcrIF7, which disables target DNA recognition by the PAM interaction site in the type I-F Cas8f subunit. The two Acr domains are connected by a flexible linker that allows prompt docking onto their cognate Cas8 targets. Conserved negative charges in each Acr domain are required for interaction with their Cas8 targets. Our results illustrate a common mechanism by which AcrIE4-F7 inhibits divergent CRISPR-Cas types.  相似文献   
66.
Actin directly interacts with phospholipase D, inhibiting its activity   总被引:8,自引:0,他引:8  
Mammalian phospholipase D (PLD) plays a key role in several signal transduction pathways and is involved in many diverse functions. To elucidate the complex molecular regulation of PLD, we investigated PLD-binding proteins obtained from rat brain extract. Here we report that a 43-kDa protein in the rat brain, beta-actin, acts as a major PLD2 direct-binding protein as revealed by peptide mass fingerprinting in combination with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. We also determined that the region between amino acids 613 and 723 of PLD2 is required for the direct binding of beta-actin, using bacterially expressed glutathione S-transferase fusion proteins of PLD2 fragments. Intriguingly, purified beta-actin potently inhibited both phosphatidylinositol-4,5-bisphosphate- and oleate-dependent PLD2 activities in a concentration-dependent manner (IC50 = 5 nm). In a previous paper, we reported that alpha-actinin inhibited PLD2 activity in an interaction-dependent and an ADP-ribosylation factor 1 (ARF1)-reversible manner (Park, J. B., Kim, J. H., Kim, Y., Ha, S. H., Kim, J. H., Yoo, J.-S., Du, G., Frohman, M. A., Suh, P.-G., and Ryu, S. H. (2000) J. Biol. Chem. 275, 21295-21301). In vitro binding analyses showed that beta-actin could displace alpha-actinin binding to PLD2, demonstrating independent interaction between cytoskeletal proteins and PLD2. Furthermore, ARF1 could steer the PLD2 activity in a positive direction regardless of the inhibitory effect of beta-actin on PLD2. We also observed that beta-actin regulates PLD1 and PLD2 with similar binding and inhibitory potencies. Immunocytochemical and co-immunoprecipitation studies demonstrated the in vivo interaction between the two PLD isozymes and actin in cells. Taken together, these results suggest that the regulation of PLD by cytoskeletal proteins, beta-actin and alpha-actinin, and ARF1 may play an important role in cytoskeleton-related PLD functions.  相似文献   
67.
The biphasic poroviscoelastic (BPVE) model was curve fit to the simultaneous relaxation of reaction force and lateral displacement exhibited by articular cartilage in unconfined compression (n=18). Model predictions were also made for the relaxation observed in reaction force during indentation with a porous plane-ended metal indenter (n=4), indentation with a nonporous plane ended metal indenter (n=4), and during confined compression (n=4). Each prediction was made using material parameters resulting from curve fits of the unconfined compression response of the same tissue. The BPVE model was able to account for both the reaction force and the lateral displacement during unconfined compression very well. Furthermore, model predictions for both indentation and confined compression also followed the experimental data well. These results provide substantial evidence for the efficacy of the biphasic poroviscoelastic model for articular cartilage, as no successful cross-validation of a model simulation has been demonstrated using other mathematical models.  相似文献   
68.
Suh JK  Youn I  Fu FH 《Journal of biomechanics》2001,34(10):1347-1353
A change in mechanical properties of articular cartilage would be considered one of the most reliable signs of cartilage degeneration. While an indentation method has the potential to measure the cartilage properties in vivo, an accurate measurement of cartilage thickness in situ is technically difficult. An ultrasound transducer has often been used to measure the cartilage thickness. However, its accuracy is limited by the lack of an accurate measurement of the ultrasound speed of cartilage, for the ultrasound speed varies according to the pathological conditions of the tissue. Therefore, the objective of this study is to develop an in situ calibration method of predicting the true ultrasound speed of cartilage and thus allow the ultrasound transducer to measure the thickness of the tissue with great accuracy. By simultaneously implementing an indentation testing protocol using the ultrasound transducer as an indenter, this method can also provide an indentation stiffness measurement of cartilage.The feasibility of the proposed method was examined using normal and proteoglycan-depleted cartilage specimens. It was found that the true ultrasound speed measured by the in situ calibration method was sensitive to the proteoglycan depletion (1735+/-35 m/s for normal, and 1598+/-28 m/s for proteoglycan-depleted cartilage), and that the measured cartilage thickness was consistently accurate regardless of the tissue condition. The measured indentation stiffness of articular cartilage was also sensitive to the tissue condition. Thus, this study demonstrates that the proposed ultrasonic indentation technique can be used to accurately identify the abnormality of articular cartilage in situ.  相似文献   
69.
Jang IH  Kim JH  Lee BD  Bae SS  Park MH  Suh PG  Ryu SH 《FEBS letters》2001,491(1-2):4-8
Upon epidermal growth factor treatment, phospholipase C-gamma1 (PLC-gamma1) translocates from cytosol to membrane where it is phosphorylated at tyrosine residues. Caveolae are small plasma membrane invaginations whose structural protein is caveolin. In this study, we show that the translocation of PLC-gamma1 and its tyrosine phosphorylation are localized in caveolae by caveolin-enriched low-density membrane (CM) preparation and immunostaining of cells. Pretreatment of cells with methyl-beta-cyclodextrin (MbetaCD), a chemical disrupting caveolae structure, inhibits the translocation of PLC-gamma1 to CM as well as phosphatidylinositol (PtdIns) turnover. However, MbetaCD shows no effect on tyrosine phosphorylation level of PLC-gamma1. Our findings suggest that, for proper signaling, PLC-gamma1 phosphorylation has to occur at PtdInsP(2)-enriched sites.  相似文献   
70.
The MJ0490 gene, one of the only two genes of Methanococcus jannaschii showing sequence similarity to the lactate/malate family of dehydrogenases, was classified initially as coding for a putative l-lactate dehydrogenase (LDH). It has been re-classified as a malate dehydrogenase (MDH) gene, because it shows significant sequence similarity to MT0188, MDH II from Methanobacterium thermoautotrophicum strain DeltaH. The three-dimensional structure of its gene product has been determined in two crystal forms: a "dimeric" structure in the orthorhombic crystal at 1.9 A resolution and a "tetrameric" structure in the tetragonal crystal at 2.8 A. These structures share a similar subunit fold with other LDHs and MDHs. The tetrameric structure resembles typical tetrameric LDHs. The dimeric structure is equivalent to the P-dimer of tetrameric LDHs, unlike dimeric MDHs, which correspond to the Q-dimer. The structure reveals that the cofactor NADP(H) is bound at the active site, despite the fact that it was not intentionally added during protein purification and crystallization. The preference of NADP(H) over NAD(H) has been supported by activity assays. The cofactor preference is explained by the presence of a glycine residue in the cofactor binding pocket (Gly33), which replaces a conserved aspartate (or glutamate) residue in other NAD-dependent LDHs or MDHs. Preference for NADP(H) is contributed by hydrogen bonds between the oxygen atoms of the monophosphate group and the ribose sugar of adenosine in NADP(H) and the side-chains of Ser9, Arg34, His36, and Ser37. The MDH activity of MJ0490 is made possible by Arg86, which is conserved in MDHs but not in LDHs. The enzymatic assay showed that the MJ0490 protein possesses the fructose-1,6-bisphosphate-activated LDH activity (reduction). Thus the MJ0490 gene product appears to be a novel member of the lactate/malate dehydrogenase family, displaying an LDH scaffold and exhibiting a relaxed substrate and cofactor specificities in NADP(H) and NAD(H)-dependent malate and lactate dehydrogenase reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号