首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14819篇
  免费   1191篇
  国内免费   906篇
  2024年   35篇
  2023年   160篇
  2022年   336篇
  2021年   554篇
  2020年   416篇
  2019年   505篇
  2018年   610篇
  2017年   433篇
  2016年   628篇
  2015年   897篇
  2014年   1046篇
  2013年   1190篇
  2012年   1397篇
  2011年   1245篇
  2010年   828篇
  2009年   603篇
  2008年   830篇
  2007年   714篇
  2006年   585篇
  2005年   566篇
  2004年   562篇
  2003年   473篇
  2002年   380篇
  2001年   263篇
  2000年   235篇
  1999年   237篇
  1998年   117篇
  1997年   90篇
  1996年   76篇
  1995年   90篇
  1994年   73篇
  1993年   51篇
  1992年   74篇
  1991年   70篇
  1990年   43篇
  1989年   40篇
  1988年   44篇
  1987年   30篇
  1986年   31篇
  1985年   27篇
  1984年   27篇
  1983年   17篇
  1982年   16篇
  1981年   14篇
  1979年   20篇
  1974年   14篇
  1973年   24篇
  1969年   14篇
  1966年   13篇
  1958年   13篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
31.
The effects of fumonisins B1FB1, B2(FB{2}), and the backbone of fumonisin B1 remaining after hydrolysis of the tricarballylic groups with base (HFB1) on sphingolipid biosynthesis were studied in both primary rat hepatocytes and pig kidney epithelial cells (LLC-PK1). Fumonisins were potent inhibitors of sphingolipid biosynthesis in hepatocytes (IC50 of FB1=0.1 M), but overt toxicity was not observed. In renal cells, fumonisins also inhibited sphingosine biosynthesis (IC50 for FB1=35 M), and caused decreased cell proliferation as well. Higher doses (70 M) killed renal cells after exposure for 3 days. The inhibition of de novo sphingolipid biosynthesis was specific, and appeared to be at the site of ceramide synthase, which catalyzes the formation of dihydroceramide or ceramide by the addition of the amide-linked fatty acid to sphinganine or sphingosine. These results may account for the ability of fumonisins to cause equine leucoencephalomalacia and to promote tumor formation.  相似文献   
32.
We have isolated a second gene (MLS1), which in addition to DAL7, encodes malate synthase from S. cerevisiae. Expression of the two genes is specific for their physiological roles in carbon and nitrogen metabolism. Expression of MLS1, which participates in the utilization of non-fermentable carbon sources, is sensitive to carbon catabolite repression, but nearly insensitive to nitrogen catabolite repression. DAL7, which participates in catabolism of the nitrogenous compound allantoin, is insensitive to carbon catabolite repression, but highly sensitive to nitrogen catabolite repression. Results obtained with null mutations in these genes suggest that S. cerevisiae contains at least one and perhaps two additional malate synthase genes.  相似文献   
33.
国产五种菊属植物的核型研究   总被引:21,自引:0,他引:21  
本文对国产5种菊属植物的核型进行了研究,结果为:D. indicum 2n=2x=18=16m 2st,2n=4x=36=28m 6sm 2st;D. lavandulifolium 2n=2x=18=14m 4sm,2n=4x=36=28m 6sm 2st;D. lavandulifolium var.seticuspe 2n=2x=18=12m 6sm;D. chanetii 2n=4x=36=20m 14sm 2st,2n=6x=54=38m 14sm 2st;D. potentilloides2n=2x=18=14m 2sm 2st;D. vestitum 2n=6x=54=38m 16sm.核型分析的结果表明,本文所研究类群中出现的多倍体多为异源多倍体;根据对核型资料、形态特征及地理分布特点的综合分析,作者认为多倍化是菊属野生种进行的主要途径。  相似文献   
34.
35.
Summary Uroporphyrinogen III synthase [UROS; hydroxymethylbilane hydro-lyase (cyclizing), EC 4.2.1.75] is the fourth enzyme in the human heme biosynthetic pathway. The recent isolation of the cDNA encoding human UROS facilitated its chromosomal localization. Human UROS sequences were specifically amplified by the polymerase chain reaction (PCR) from genomic DNA of two independent panels of human-rodent somatic cell hybrids. There was 100% concordance for the presence of the human UROS PCR product and human chromosome 10. For each of the other chromosomes, there was 19%–53% discordance with human UROS. The chromosomal assignment was confirmed by Southern hybridization analysis of DNA from somatic cell hybrids with the full-length UROS cDNA. Using human-rodent hybrids containing different portions of human chromosome 10, we assigned the UROS gene to the region 10q25.2 q26.3.  相似文献   
36.
Enzymatic down regulation with exercise in rat skeletal muscle   总被引:13,自引:0,他引:13  
Maximal activities of rat skeletal muscle mitochondrial citrate synthase (CS), malate dehydrogenase (MDH), and alanine aminotransferase (ALT), as well as several other mitochondrial enzymes involved in various metabolic functions were significantly suppressed after a single bout of acute or exhaustive treadmill running. This enzymatic "down regulation" was maintained 24 and 48 h post exhaustion, especially in the untrained rats. Neither muscle cytosolic nor hepatic enzymes exhibited down regulation after exercise. Proteolysis was increased with exercise as assessed by the clearance of [3H]leucine previously incorporated into the proteins of the rats. Decreased CS, MDH, and ALT activities correlated with a significant loss of mitochondrial total protein sulfhydryl (r = 0.67, 0.68, 0.59, respectively, P less than 0.001) in untrained rats and both CS and MDH could be partially restored by incubation with dithiothreitol. Endurance-tested untrained and trained rats had significantly higher glutathione peroxidase (GPX) activity in both muscle mitochondria and cytosol which correlated significantly with endurance time (r = 0.70 and 0.74, respectively). It is concluded that enzymatic down regulation is not caused by proteolysis alone; i.e., peroxides and oxygen free radicals produced in prolonged exercise may alter the intramitochondrial redox state by oxidizing free thiols that may be required at active sites of these enzymes. Training may enhance the ability of the muscle to resist the toxic oxygen species by increasing GPX activity.  相似文献   
37.
The ability to serially propagate mammalian cells in microcarrier cultures is essential for large-scale operation. The success of such serial propagation depends on viable dissociation of cells from microcarriers and the normal growth and product formation after subsequent reinoculation. The high pH treatment developed for dissociating cells from DEAE-derivatized microcarriers was not as effective for a number of cell strains cultivated on gelatin-coated microcarriers. By prewashing the cell-laden microcarriers with buffer containing a chelating agent, bovine kidney cells, BK, human embryonic foreskin fibroblasts, FS-4, and continuous human kidney cells, TCL-598 which produces prourokinase, were viably dissociated from commercially available gelatin-coated microcarriers, Cytodex-3. Cells dissociated from microcarriers reattached and grew on micro-carriers subsequent to inoculation into subcultures. However, after subculturing, cells may attach at different rates to newly added beads and to conditioned microcarriers which cells had previously grown. It resulted in an uneven cell distribution on microcarriers and inferior growth kinetics. This effect was more profound for BK and FS-4 cells which are propagated with a low multiplication ratio. Specifically, BK cells attach to conditioned beads at a faster rate than to new beads, while FS-4 cells attach to new beads faster than to conditioned beads. Thus, for these two cell strains, a separator was used to separate the microcarriers from the suspension of dissociated cells before subsequent inoculation. For TCL-598 cells, which are propagated at a high multiplication ratio, this dissociation technique can be applied directly without the separation of dissociated cells and conditioned microcarriers. All the three cell lines tested exhibit normal growth kinetics in serial propagation on microcarriers. Furthermore, the production of prourokinase by TCL598 cells serially propagated on microcarriers was comparable to that inoculated from roller bottles.  相似文献   
38.
39.
40.
Disulfides of the lutropin receptor   总被引:1,自引:0,他引:1  
Affinity cross-linking of the lutropin receptor with 125I-human choriogonadotropin (hCG) on porcine granulosa cells produced four distinct homone-receptor complexes under reducing conditions. They contain 18-, 24-, 28-, and 34-kDa components (Ji, I., Bock, J. H., and Ji, T. H. (1985) J. Biol. Chem. 260, 12815-12821). Photoaffinity labeling and cross-linking produced 136-, 102-, and 74-kDa hCG-receptor complexes under reducing conditions and the 136-kDa complex under nonreducing conditions. In addition, the unreduced 102-kDa complex was seen in photoaffinity labeling but not in cross-linking. When the unreduced 136-kDa complex was reduced, the 102- and 74-kDa complexes were generated, indicating release of the 34- and the 28-kDa components in two steps. When the unreduced 102-kDa complex was reduced, the 74-kDa complex was produced, indicating the release of a 28-kDa component. The 74-kDa complex could not be reduced but was cleaved by alkaline treatment to produce the hCG alpha beta dimer. The results indicate that the 24-kDa component is released from the 74-kDa complex, since the apparent mass of the hCG alpha beta dimer on gels is 50 kDa. The 24-kDa component appears to be the initial site for photoaffinity labeling or cross-linking and to be disulfide linked to the 28-kDa component which is in turn disulfide linked to the 34-kDa component. These intercomponent disulfides exist in some receptors but not all. Formation of the disulfide-linked 136-kDa band required the presence of a sulfhydryl-blocking agent, N-ethylmaleimide. In particular, the 34-kDa component was vulnerable to reduction. There was no significant evidence of disulfides between the hormone and any of the receptor components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号