首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18856篇
  免费   1694篇
  国内免费   1427篇
  21977篇
  2023年   243篇
  2022年   533篇
  2021年   896篇
  2020年   604篇
  2019年   689篇
  2018年   728篇
  2017年   538篇
  2016年   699篇
  2015年   1148篇
  2014年   1263篇
  2013年   1365篇
  2012年   1563篇
  2011年   1502篇
  2010年   980篇
  2009年   838篇
  2008年   907篇
  2007年   876篇
  2006年   770篇
  2005年   656篇
  2004年   618篇
  2003年   543篇
  2002年   516篇
  2001年   392篇
  2000年   390篇
  1999年   359篇
  1998年   169篇
  1997年   161篇
  1996年   158篇
  1995年   119篇
  1994年   146篇
  1993年   90篇
  1992年   155篇
  1991年   147篇
  1990年   122篇
  1989年   98篇
  1988年   82篇
  1987年   96篇
  1986年   83篇
  1985年   92篇
  1984年   48篇
  1983年   48篇
  1982年   48篇
  1981年   36篇
  1980年   37篇
  1979年   52篇
  1978年   41篇
  1977年   45篇
  1976年   33篇
  1975年   35篇
  1974年   44篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
102.
103.
Chronic hepatitis B virus (HBV) infection is characterized by sustained liver inflammation with an influx of lymphocytes, which contributes to the development of cirrhosis and hepatocellular carcinoma. The mechanisms underlying this immune-mediated hepatic pathogenesis remain ill defined. We report in this article that repetitive infusion of anti-CD137 agonist mAb in HBV-transgenic mice closely mimics this process by sequentially inducing hepatitis, fibrosis, cirrhosis, and, ultimately, liver cancer. CD137 mAb initially triggers hepatic inflammatory infiltration due to activation of nonspecific CD8(+) T cells with memory phenotype. CD8(+) T cell-derived IFN-γ plays a central role in the progression of chronic liver diseases by actively recruiting hepatic macrophages to produce fibrosis-promoting cytokines and chemokines, including TNF-α, IL-6, and MCP-1. Importantly, the natural ligand of CD137 was upregulated significantly in circulating CD14(+) monocytes in patients with chronic hepatitis B infection and closely correlated with development of liver cirrhosis. Thus, sustained CD137 stimulation may be a contributing factor for liver immunopathology in chronic HBV infection. Our studies reveal a common molecular pathway that is used to defend against viral infection but also causes chronic hepatic diseases.  相似文献   
104.
Genistein, the major isoflavone in soybean, was recently reported to exert beneficial effects in metabolic disorders and inflammatory diseases. In the present study, we investigated the effects and mechanisms of a dietary concentration of genistein on the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Our results demonstrated that genistein effectively inhibited the LPS-induced overproduction of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), as well as LPS-induced nuclear factor kappa B (NF-κB) activation. In addition, the data also showed that genistein prevented LPS-induced decrease in adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. These effects were obviously attenuated by an AMPK inhibitor. Taken together, our results suggest that the dietary concentration of genistein is able to attenuate inflammatory responses via inhibition of NF-κB activation following AMPK stimulation. The data provide direct evidence for the potential application of low concentrations of genistein in the prevention and treatment of inflammatory diseases.  相似文献   
105.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   
106.
Mitochondrial dysfunction is becoming one of the main pathology factors involved in the etiology of neurological disorders. Recently, mutations of the coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) which encode two homologous proteins that belong to the mitochondrial CHCH domain protein family, are linked to Parkinson’s disease and amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), respectively. However, the physiological and pathological roles of these twin proteins have not been well elaborated. Here, we show that, in physiological conditions, CHCHD2 and CHCHD10 interact with OMA1 and suppress its enzyme activity, which not only restrains the initiation of the mitochondrial integrated response stress (mtISR), but also suppresses the processing of OPA1 for mitochondrial fusion. Further, during mitochondria stress-induced by carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, CHCHD2 and CHCHD10 translocate to the cytosol and interacte with eIF2a, which attenuates mtISR overactivation by suppressing eIF2a phosphorylation and its downstream response. As such, knockdown of CHCHD2 and CHCHD10 triggers mitochondrial ISR, and such cellular response is enhanced by CCCP treatment. Therefore, our findings demonstrate the first “mtISR suppressor” localized in mitochondria for regulating stress responses in mammalian cells, which has a profound pathological impact on the CHCH2/CHCH10-linked neurodegenerative disorder.Subject terms: Stress signalling, Mitochondria  相似文献   
107.
Acute lung injury (ALI) is a severe pulmonary disease that causes a high number of fatalities worldwide. Studies have shown that FoxA1 expression is upregulated during ALI and may play an important role in ALI by promoting the apoptosis of alveolar type II epithelial cells. However, the mechanism of FoxA1 overexpression in ALI is unclear. In this study, an in vivo murine model of ALI and alveolar type II epithelial cells injury was induced using lipopolysaccharide (LPS). LPS upregulated FoxA1 in the lung tissue of the in vivo ALI model and in LPS-challenged type II epithelial cells. In contrast, miR-17 was significantly downregulated in these models. After miR-17 antagomir injection, the expression of FoxA1 was significantly increased in ALI mice. MiR-17 mimics could significantly inhibit FoxA1 mRNA and protein expression, whereas the miR-17 inhibitor could significantly increase FoxA1 mRNA and protein expression in LPS-induced type II epithelial cells. Thus, our results suggest that the downregulation of miR-17 expression could lead to FoxA1 overexpression in ALI.  相似文献   
108.
Within minutes after infecting Escherichia coli, bacteriophage T7 synthesizes many copies of its genomic DNA. The lynchpin of the T7 replication system is a bifunctional primase-helicase that unwinds duplex DNA at the replication fork while initiating the synthesis of Okazaki fragments on the lagging strand. We have determined a 3.45 A crystal structure of the T7 primase-helicase that shows an articulated arrangement of the primase and helicase sites. The crystallized primase-helicase is a heptamer with a crown-like shape, reflecting an intimate packing of helicase domains into a ring that is topped with loosely arrayed primase domains. This heptameric isoform can accommodate double-stranded DNA in its central channel, which nicely explains its recently described DNA remodeling activity. The double-jointed structure of the primase-helicase permits a free range of motion for the primase and helicase domains that suggests how the continuous unwinding of DNA at the replication fork can be periodically coupled to Okazaki fragment synthesis.  相似文献   
109.
Intramuscular fat content and water-holding capacity are important traits in livestock as they influence meat quality, nutritive value of the muscle, and animal health. As a model for livestock, two inbred lines of the Berlin Muscle Mouse population, which had been long-term selected for high muscle mass, were used to identify genomic regions affecting intramuscular fat content and water-holding capacity. The intramuscular fat content of the Musculus longissimus was on average 1.4 times higher in BMMI806 than in BMMI816 mice. This was accompanied by a 1.5 times lower water-holding capacity of the Musculus quadriceps in BMMI816 mice. Linkage analyses with 332 G3 animals of reciprocal crosses between these two lines revealed quantitative trait loci for intramuscular fat content on chromosome 7 and for water-holding capacity on chromosome 2. In part, the identified loci coincide with syntenic regions in pigs in which genetic effects for the same traits were found. Therefore, these muscle-weight-selected mouse lines and the produced intercross populations are valuable genetic resources to identify genes that could also contribute to meat quality in other species.  相似文献   
110.

Scopes

To investigate the effects of high-fat diet enriched with lard oil or soybean oil on liver endoplasmic reticulum (ER) stress and inflammation markers in diet-induced obese (DIO) rats and estimate the influence of following low-fat diet feeding.

Methods and Results

Male SD rats were fed with standard low-fat diet (LF, n = 10) and two isoenergentic high-fat diets enriched with lard (HL, n = 45) or soybean oil (HS, n = 45) respectively for 10 weeks. Then DIO rats from HL and HS were fed either high-fat diet continuously (HL/HL, HS/HS) or switched to low-fat diet (HL/LF, HS/LF) for another 8 weeks. Rats in control group were maintained with low-fat diet. Body fat, serum insulin level, HOMA-IR and ectopic lipid deposition in liver were increased in HL/HL and HS/HS compared to control, but increased to a greater extent in HL/HL compared to HS/HS. Markers of ER stress including PERK and CHOP protein expression and phosphorylation of eIF2α were significantly elevated in HL/HL group while phosphorylation of IRE1α and GRP78 protein expression were suppressed in both HL/HL and HS/HS. Besides, inflammatory signals (OPN, TLR2, TLR4 and TNF-α) expressions significantly increased in HL/HL compared to others. Switching to low-fat diet reduced liver fat deposition, HOMA-IR, mRNA expression of TLR4, TNF-α, PERK in both HL/LF and HS/LF, but only decreased protein expression of OPN, PERK and CHOP in HL/LF group. In addition, HL/LF and HS/LF exhibited decreased phosphorylation of eIF2α and increased phosphorylation of IRE1α and GRP78 protein expression when compared with HL/HL and HS/HS respectively.

Conclusions

Lard oil was more deleterious in insulin resistance and hepatic steatosis via promoting ER stress and inflammation responses in DIO rats, which may be attributed to the enrichment of saturated fatty acid. Low-fat diet was confirmed to be useful in recovering from impaired insulin sensitivity and liver fat deposition in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号