首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35497篇
  免费   3286篇
  国内免费   5224篇
  2024年   87篇
  2023年   462篇
  2022年   1068篇
  2021年   1884篇
  2020年   1366篇
  2019年   1747篇
  2018年   1595篇
  2017年   1236篇
  2016年   1678篇
  2015年   2424篇
  2014年   2926篇
  2013年   3021篇
  2012年   3645篇
  2011年   3302篇
  2010年   2114篇
  2009年   1881篇
  2008年   2110篇
  2007年   1895篇
  2006年   1656篇
  2005年   1353篇
  2004年   1107篇
  2003年   1040篇
  2002年   871篇
  2001年   547篇
  2000年   474篇
  1999年   435篇
  1998年   283篇
  1997年   259篇
  1996年   231篇
  1995年   184篇
  1994年   178篇
  1993年   125篇
  1992年   132篇
  1991年   104篇
  1990年   78篇
  1989年   77篇
  1988年   61篇
  1987年   40篇
  1986年   52篇
  1985年   61篇
  1984年   23篇
  1983年   29篇
  1982年   29篇
  1981年   23篇
  1980年   10篇
  1979年   20篇
  1978年   9篇
  1974年   8篇
  1973年   11篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
991.
Short-chain dehydrogenase Gox2181 from Gluconobacter oxydans catalyzes the reduction of 2,3-pentanedione by using NADH as the physiological electron donor. To realize its synthetic biological application for coenzyme recycling use, computational design and site-directed mutagenesis have been used to engineer Gox2181 to utilize not only NADH but also NADPH as the electron donor. Single and double mutations at residues Q20 and D43 were made in a recombinant expression system that corresponded to Gox2181-D43Q and Gox2181-Q20R&D43Q, respectively. The design of mutant Q20R not only resolved the hydrogen bond interaction and electrostatic interaction between R and 2′-phosphate of NADPH, but also could enhance the binding with 2′-phophated of NADPH by combining with D43Q. Molecular dynamics simulation has been carried out to testify the hydrogen bond interactions between mutation sites and 2′-phosphate of NADPH. Steady-state turnover measurement results indicated that Gox2181-D43Q could use both NADH and NADPH as its coenzyme, and so could Gox2181-Q20R&D43Q. Meanwhile, compared to the wild-type enzyme, Gox2181-D43Q exhibited dramatically reduced enzymatic activity while Gox2181-Q20R&D43Q successfully retained the majority of enzymatic activity.  相似文献   
992.
The aim of this study was to evaluate the impact of zeolite powders on feasibility of rapid aerobic granulation in the column-type sequencing batch reactors. After 90 days' operation, aerobic granular sludge was formed in both reactors by altering influent chemical oxygen demand/nitrogen (COD/N) ratios. R1 with zeolite powders had better removal capabilities of COD and total nitrogen than R2, which was without zeolite powders. Mixed liquor volatile suspended solid concentrations of the two reactors were 7.36 and 5.45 g/L, while sludge volume index (SVI30) values were 34.9 and 47.9 mg/L, respectively. The mean diameters of aerobic granular sludge in the above two reactors were 2.5 and 1.5 mm, respectively. Both reactors achieved the largest simultaneous nitrification and denitrification (SND) efficiency at an influent COD/N ratio of 8; however, R1 exhibited more excellent SND efficiency than R2. The obtained results could provide a novel technique for rapid aerobic granulation and N removal simultaneously, especially when treating nitrogen-rich industrial wastewater.  相似文献   
993.
A process for human influenza H1N1 virus vaccine production from Madin–Darby canine kidney (MDCK) cells using a novel packed-bed bioreactor is described in this report. The mini-bioreactor was used to study the relationship between cell density and glucose consumption rate and to optimize the infection parameters of the influenza H1N1 virus (A/New Caledonia/20/99). The MDCK cell culture and virus infection were then monitored in a disposable perfusion bioreactor (AmProtein Current Perfusion Bioreactor) with proportional–integral–derivative control of pH, dissolved O2 (DO), agitation, and temperature. During 6 days of culture, the total cell number increased from 2.0?×?109 to 3.2?×?1010 cells. The maximum virus titers of 768 hemagglutinin units/100 μL and 7.8?×?107 50 % tissue culture infectious doses/mL were obtained 3 days after infection. These results demonstrate that using a disposable perfusion bioreactor for large-scale cultivation of MDCK cells, which allows for the control of DO, pH, and other conditions, is a convenient and stable platform for industrial-scale production of influenza vaccines.  相似文献   
994.
Soy sauce is a traditional condiment manufactured by natural inoculation and mixed culture fermentation. As is well known, it is the microbial community that plays an important role in the formation of its flavors. However, to date, its dynamic changes during the long period of fermentation process are still unclear, intensively constraining the improvement and control of the soy sauce quality. In this work, we revealed the dynamic changes of the microbial community by combining a cultured dependent method and a cultured independent method of polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis. Results indicated that the two methods verified and complemented each other in profiling microbial community, and that significant dynamics of the microbial community existed during the fermentation process, especially the strong inhibition of the growth of most of the microbes when entering into the mash stage from the koji stage. In the analysis of bacterial community, Staphylococcus and Bacillus were found to be the dominant bacteria and detected in the whole fermentation process. Kurthia and Klebsiella began to appear in the koji stage and then fade away in the early stage of the mash fermentation. In the analysis of fungal community, Aspergillus sojae and Zygosaccharomyces rouxii were found to be the dominant fungi in the koji and mash fermentation, respectively. It was clearly shown that when A. sojae decreased and disappeared in the middle stage of the mash fermentation, Z. rouxii appeared and increased at the meantime. Aspergillus parasiticus, Trichosporon ovoides and Trichosporon asahii also appeared in the koji and the early period of the mash fermentation and disappeared thereafter. Similar to Z. rouxii, Millerozyma farinosa and Peronospora farinosa were also found spontaneously which appeared in the mid-late period of the mash fermentation. The principal component analysis suggested that the microbial community underwent significant changes in the early period of the fermentation and, thereafter, tended to the stabilization in the mid-late periods. This study gave us important clues to understand the fermentation process and can serve as a foundation for improving the quality of soy sauce in the future.  相似文献   
995.
Imidacloprid, the largest selling insecticide in the world, is more stable in soil, and its environmental residue and effects are attracting people's close attention. One of imidacloprid metabolism pathways was degraded to CO2 through olefin imidacloprid pathway. Here, we report that sucrose as a utilizable substrate enhanced the cometabolism of imidacloprid by Stenotrophomonas maltophilia CGMCC 1.1788 to produce 5-hydroxy imidacloprid, whereas when succinate was used as a utilizable substrate, 5-hydroxy imidacloprid from imidacloprid was transformed to olefin imidacloprid, and the latter was further degraded. The hydroxylation of imidacloprid required NAD(P)H, whereas the dehydration of 5-hydroxy imidacloprid to form olefin imidacloprid required succinate rather than NAD(P)H. NADPH greatly favored the hydroxylation of imidacloprid more than NADH, and NADPH inhibited the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid, but NADH did not. Therefore, sucrose may be metabolized through hexose monophosphate pathway to produce mainly NADPH which participated in the hydroxylation of imidacloprid to 5-hydroxy imidacloprid and meanwhile inhibited the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid, whereas succinate may be metabolized mainly through the tricarboxylic acid cycle to produce NADH which was involved in hydroxylation of imidacloprid to 5-hydroxy imidacloprid but did not inhibit the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid. Our results have a significant meaning in further understanding the influence of different utilizable substrates on the cometabolic pathways and the fate of environmental imidacloprid.  相似文献   
996.
997.
Sequential polygyny is a reproductive strategy that allows males to continue to mate and compensates for the loss of future breeding opportunities incurred by parental care (i.e. egg attendance). Using the frog Kurixalus eiffengeri, we tested predictions that (1) attending males fathered two, overlapping clutches; and (2) that double clutching leads to improved offspring numbers. Using five microsatellite DNA markers, we genotyped 15 pairs of overlapping clutches, which differed slightly in developmental stage at a single egg‐laying site. Parentage analyses showed at least 12 of 15 pairs of overlapping egg clutches were sired by the attending male mated with different females, providing the first genetic evidence to support an earlier prediction that attending males sired both egg clutches. Field surveys found a low incidence of overlapping clutches (4.9% of 263 egg‐occupied stumps), suggesting sequential polygyny is uncommon. Stumps with multiple clutches contained significantly more eggs than stumps with single clutches but hatched similar number of tadpoles. Results suggest that continuous calling that attracts females during egg attendance is a reproductive tactic that maximizes mating opportunities. However, adoption of the sequential polygyny tactic may only result in marginal fitness gains for males that are traded off against average higher egg mortality in larger egg clutches.  相似文献   
998.
Depending upon the stimulus, neuronal cell death can either be triggered from the cell body (soma) or the axon. We investigated the origin of the degeneration signal in amyloid β (Aβ) induced neuronal cell death in cultured in vitro hippocampal neurons. We discovered that Aβ1–42 toxicity-induced axon degeneration precedes cell death in hippocampal neurons. Overexpression of Bcl-xl inhibited both axonal and cell body degeneration in the Aβ-42 treated neurons. Nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) blocks axon degeneration in a variety of paradigms, but it cannot block neuronal cell body death. Therefore, if the neuronal death signals in Aβ1–42 toxicity originate from degenerating axons, we should be able to block neuronal death by inhibiting axon degeneration. To explore this possibility we over-expressed Nmnat1 in hippocampal neurons. We found that inhibition of axon degeneration in Aβ1–42 treated neurons prevented neuronal cell death. Thus, we conclude that axon degeneration is the key component of Aβ1–42 induced neuronal degeneration, and therapies targeting axonal protection can be important in finding a treatment for Alzheimer’s disease.  相似文献   
999.
In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field‐induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Bioelectromagnetics 34:253–263, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
1000.
Type I and II pyrethroid insecticides display different neurotoxicity. To investigate the long-term (60 days exposure) metabolic effect of the two types of pyrethroid insecticides deltamethrin and permethrin, 1H nuclear magnetic resonance (NMR) spectroscopy-based metabonomics was used to analyze the biochemical composition of urine and serum samples from rats administrated daily with deltamethrin or permethrin for 60 consecutive days, and principal component analysis used to visualize similarities and differences in the resultant biochemical profiles. Rats treated with either deltamethrin or permethrin displayed increased levels of urinary acetate, dimethylamine, dimethylglycine, trimethylamine and serum free amino acids, and decreased urinary 2-oxoglutarate, all of which are indicative of kidney lesions and nephrotoxicity. The reduced excretion of tricarboxylic acid cycle intermediates, together with increased 3-D-hydroxybutyrate, acetate, and lactate in treated rats could suggest disturbance of the energy metabolism, including an increased rate of anaerobic glycolysis, enhanced fatty acid β-oxidation and ketogenesis. These results show that these two types of insecticides have similarities in the urine and serum spectra, indicating that similar metabolic pathways are perturbed by the insecticides, which induced hepatotoxicity and nephrotoxicity. This approach may lead to the discovery of novel biomarkers of pyrethroids toxicity and thereby provide new insights into the toxicological mechanisms of pesticides pyrethroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号