首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1368篇
  免费   106篇
  国内免费   6篇
  1480篇
  2021年   24篇
  2020年   21篇
  2019年   17篇
  2018年   36篇
  2017年   32篇
  2016年   44篇
  2015年   64篇
  2014年   69篇
  2013年   94篇
  2012年   98篇
  2011年   85篇
  2010年   55篇
  2009年   39篇
  2008年   55篇
  2007年   54篇
  2006年   46篇
  2005年   44篇
  2004年   29篇
  2003年   29篇
  2002年   33篇
  2001年   29篇
  2000年   30篇
  1999年   19篇
  1998年   18篇
  1997年   9篇
  1995年   10篇
  1994年   15篇
  1993年   12篇
  1992年   16篇
  1991年   24篇
  1990年   16篇
  1989年   14篇
  1988年   19篇
  1987年   30篇
  1986年   21篇
  1985年   26篇
  1984年   17篇
  1983年   12篇
  1982年   15篇
  1981年   9篇
  1980年   10篇
  1979年   13篇
  1978年   9篇
  1976年   8篇
  1974年   9篇
  1973年   14篇
  1972年   8篇
  1971年   8篇
  1970年   10篇
  1968年   8篇
排序方式: 共有1480条查询结果,搜索用时 15 毫秒
101.
Diabetes mellitus has emerged as one of the main alarms to human health in the 21st century. Pronounced changes in the human environment, behavior and lifestyle have accompanied globalization, which resulted in escalating rates of both obesity and diabetes, already described as diabesity. This pandemic causes deterioration of life quality with high socio-economic costs, particularly due to premature morbidity and mortality. To avoid late complications of type 2 diabetes and related costs, primary prevention and early treatment are therefore necessary. In this context, effective non-pharmacological measures, such as regular physical activity, are imperative to avoid complications, as well as polymedication, which is associated with serious side-effects and drug-to-drug interactions. Our previous work showed, in an animal model of obese type 2 diabetes, the Zucker Diabetic Fatty (ZDF) rat, that regular and moderate intensity physical exercise (training) is able, per se, to attenuate insulin resistance and control glycaemia, dyslipidaemia and blood pressure, thus reducing cardiovascular risk, by interfering with the pathophysiological mechanisms at different levels, including oxidative stress and low-grade inflammation, which are key features of diabesity. This paper briefly reviews the wide pathophysiological pathways associated with Type 2 diabetes and then discusses in detail the benefits of training therapy on glycaemic control and on cardiovascular risk profile in Type 2 diabetes, focusing particularly on antioxidant and anti-inflammatory properties. Based on the current knowledge, including our own findings using an animal model, it is concluded that regular and moderate intensity physical exercise (training), due to its pleiotropic effects, could replace, or at least reduce, the use of anti-diabetic drugs, as well as of other drugs given for the control of cardiovascular risk factors in obese type 2 diabetic patients, working as a physiological "polypill".  相似文献   
102.
Twelve 4-benzoyl-1-dichlorobenzoylthiosemicarbazides have been tested as potential antibacterials. All the compounds had MICs between 0.49 and 15.63?µg/ml toward Micrococcus luteus, Bacillus cereus, Bacillus subtilis and Staphylococcus epidermidis indicating, in most cases, equipotent or even more effective action than cefuroxime. In order to clarify if the observed antibacterial effects are universal, further research were undertaken to test inhibitory potency of two most potent compounds 3 and 11 on clinical isolates of Staphylococcus aureus. Compound 11 inhibited the growth of methicillin-sensitive S. aureus (MSSA) at MICs of 1.95–7.81?µg/ml, methicillin-resistant S. aureus (MRSA) at MICs of 0.49–1.95?µg/ml and MDR–MRSA at MIC of 0.98 and 3.90?µg/ml, respectively. Finally, inhibitory efficacy of 3 and 11 on planktonic cells and biofilms formation in clinical isolates of S. aureus and Haemophilus parainfluenzae was tested. The majority of cells in biofilm populations of MSSA and MRSA were eradicated at low level of 3, with MBICs in the range of 7.82–15.63?µg/ml.  相似文献   
103.
Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cell's sensitivity to Hsp90 inhibition.  相似文献   
104.
The study assesses the influence of different concentrations of nitrogen and phosphorus sources on ginsenoside biosynthesis in Panax quinquefolium hairy roots cultivated in shake flasks and a nutrient sprinkle bioreactor. The saponin content was determined using HPLC. The maximum yield (12.45 mg g?1 dw) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was achieved in modified Gamborg B-5 medium containing 0.83 mM l?1 phosphate, 12.4 mM l?1 nitrate and 0.5 mM l?1 ammonium. The yield itself was 1.93 times higher than that achieved in standard Gamborg medium. The modified medium also favourably influenced the biosynthesis of studied saponins in bioreactor cultures. The saponin content (35.11 mg g?1 d.w.) was 2.75-times higher than that achieved in control medium.  相似文献   
105.
HIV Gag polymerizes on the plasma membrane to form virus like particles (VLPs) that have similar diameters to wild-type viruses. We use multicolor, dual-penetration depth, total internal reflection fluorescence microscopy, which corrects for azimuthal movement, to image the assembly of individual VLPs from the time of nucleation to the recruitment of VPS4 (a component of the endosomal sorting complexes required for transport, and which marks the final stage of VLP assembly). Using a mathematical model for assembly and maximum-likelihood comparison of fits both with and without pauses, we detect pauses during Gag polymerization in 60% of VLPs. Pauses range from 2 to 20 min, with an exponentially distributed duration that is independent of cytosolic Gag concentration. VLPs assembled with late domain mutants of Gag (which do not recruit the key endosomal sorting complexes required for transport proteins Alix or TSG101) exhibit similar pause distributions. These pauses indicate that a single rate-limiting event is required for continuation of assembly. We suggest that pauses are either related to incorporation of defects in the hexagonal Gag lattice during VLP assembly or are caused by shortcomings in interactions of Gag with essential and still undefined cellular components during formation of curvature on the plasma membrane.  相似文献   
106.
We recently published two papers detailing the structures of fluid phase phosphatidylglycerol (PG) lipid bilayers (Ku?erka et al., 2012 J. Phys. Chem. B 116: 232–239; Pan et al., 2012 Biochim. Biophys. Acta Biomembr. 1818: 2135–2148), which were determined using the scattering density profile model. This hybrid experimental/computational technique utilizes molecular dynamics simulations to parse a lipid bilayer into components whose volume probabilities follow simple analytical functional forms. Given the appropriate scattering densities, these volume probabilities are then translated into neutron scattering length density (NSLD) and electron density (ED) profiles, which are used to jointly refine experimentally obtained small angle neutron and X-ray scattering data. However, accurate NSLD and ED profiles can only be obtained if the bilayer's chemical composition is known. Specifically, in the case of neutron scattering, the lipid's exchangeable hydrogens with aqueous D2O must be accounted for, as they can have a measureable effect on the resultant lipid bilayer structures. This was not done in our above-mentioned papers. Here we report on the molecular structures of PG lipid bilayers by appropriately taking into account the exchangeable hydrogens. Analysis indicates that the temperature-averaged PG lipid areas decrease by 1.5 to 3.8 Å2, depending on the lipid's acyl chain length and unsaturation, compared to PG areas when hydrogen exchange was not taken into account.  相似文献   
107.
Microtubules are important structures in the cytoskeleton, which organizes the cell. Since microtubules are electrically polar, certain microtubule normal vibration modes efficiently generate oscillating electric field. This oscillating field may be important for the intracellular organization and intercellular interaction. There are experiments which indicate electrodynamic activity of variety of cells in the frequency region from kHz to GHz, expecting the microtubules to be the source of this activity. In this paper, results from the calculation of intensity of electric field and of radiated electromagnetic power from the whole cellular microtubule network are presented. The subunits of microtubule (tubulin heterodimers) are approximated by elementary electric dipoles. Mechanical oscillation of microtubule is represented by the spatial function which modulates the dipole moment of subunits. The field around oscillating microtubules is calculated as a vector superposition of contributions from all modulated elementary electric dipoles which comprise the cellular microtubule network. The electromagnetic radiation and field characteristics of the whole cellular microtubule network have not been theoretically analyzed before. For the perspective experimental studies, the results indicate that macroscopic detection system (antenna) is not suitable for measurement of cellular electrodynamic activity in the radiofrequency region since the radiation rate from single cells is very low (lower than 10?2? W). Low noise nanoscopic detection methods with high spatial resolution which enable measurement in the cell vicinity are desirable in order to measure cellular electrodynamic activity reliably.  相似文献   
108.
In prion diseases, the posttranslational modification of host-encoded prion protein PrPc yields a high β-sheet content modified protein PrPsc, which further polymerizes into amyloid fibrils. PrP106-126 initiates the conformational changes leading to the conversion of PrPc to PrPsc. Molecules that can defunctionalize such peptides can serve as a potential tool in combating prion diseases. In microorganisms during stressed conditions, small stress molecules (SSMs) are formed to prevent protein denaturation and maintain protein stability and function. The effect of such SSMs on PrP106-126 amyloid formation is explored in the present study using turbidity, atomic force microscopy (AFM), and cellular toxicity assay. Turbidity and AFM studies clearly depict that the SSMs—ectoine and mannosylglyceramide (MGA) inhibit the PrP106-126 aggregation. Our study also connotes that ectoine and MGA offer strong resistance to prion peptide-induced toxicity in human neuroblastoma cells, concluding that such molecules can be potential inhibitors of prion aggregation and toxicity.  相似文献   
109.
Lin G  Liao WC  Ku ZH 《The protein journal》2005,24(4):201-207
The pre-steady states of Pseudomonas species lipase inhibitions by p-nitrophenyl-N-substituted carbamates (1-6) are composed of two steps: (1) formation of the non-covalent enzyme-inhibitor complex (E:I) from the inhibitor and the enzyme and (2) formation of the tetrahedral enzyme-inhibitor adduct (E-I) from the E:I complex. From a stopped-flow apparatus, the dissociation constant for the E:I complex, KS, and the rate constant for formation of the tetrahedral E-I adduct from the E:I complex, k2 are obtained from the non-linear least-squares of curve fittings of first-order rate constant (k(obs)) versus inhibition concentration ([I]) plot against k(obs)=k2+k2[I]/(KS+[I]). Values of pKS, and log k2 are linearly correlated with the sigma* values with the rho* values of -2.0 and 0.36, respectively. Therefore, the E:I complexes are more positive charges than the inhibitors due to the rho* value of -2.0. The tetrahedral E-I adducts on the other hand are more negative charges than the E:I complexes due to the rho* value of 0.36. Formation of the E:I complex from the inhibitor and the enzyme are further divided into two steps: (1) the pre-equilibrium protonation of the inhibitor and (2) formation of the E:I complex from the protonated inhibitor and the enzyme.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号