首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5528篇
  免费   537篇
  国内免费   128篇
  6193篇
  2023年   45篇
  2022年   95篇
  2021年   174篇
  2020年   102篇
  2019年   119篇
  2018年   131篇
  2017年   93篇
  2016年   162篇
  2015年   316篇
  2014年   334篇
  2013年   403篇
  2012年   484篇
  2011年   431篇
  2010年   249篇
  2009年   207篇
  2008年   307篇
  2007年   247篇
  2006年   243篇
  2005年   228篇
  2004年   202篇
  2003年   173篇
  2002年   169篇
  2001年   107篇
  2000年   122篇
  1999年   109篇
  1998年   64篇
  1997年   51篇
  1996年   36篇
  1995年   35篇
  1994年   43篇
  1993年   42篇
  1992年   70篇
  1991年   56篇
  1990年   46篇
  1989年   55篇
  1988年   50篇
  1987年   35篇
  1986年   39篇
  1985年   30篇
  1984年   50篇
  1983年   27篇
  1982年   27篇
  1981年   22篇
  1980年   15篇
  1979年   27篇
  1978年   24篇
  1977年   20篇
  1975年   16篇
  1974年   9篇
  1971年   11篇
排序方式: 共有6193条查询结果,搜索用时 15 毫秒
991.
Lifespan prolongation is a common desire of the human race. With advances in biotechnology, the mechanism of aging has been gradually unraveled, laying the theoretical basis of nucleic acid therapy for lifespan prolongation. Regretfully, clinically applicable interventions do not exist without the efforts of converting theory into action, and it is the latter that has been far from adequately addressed at the moment. This was demonstrated by a database search on PubMed and Web of Science, from which only seven studies published between 2000 and 2010 were found to directly touch on the development of nucleic acid therapy for anti-aging and/or longevity enhancing purposes. In light of this, the objective of this article is to overview the current understanding of the intimate association between genes and longevity, and to bring the prospect of nucleic acid therapy for lifespan prolongation to light.  相似文献   
992.
Hypoxia is a potent regulator of gene expression and cellular energy metabolism and known to interfere with post-natal growth and development. Although hypoxia can induce adaptive changes in the developing liver, the mechanisms underlying these changes are poorly understood. To elucidate some of the adaptive changes chronic hypoxia induces in the developing liver, we studied the expression of the genes of mammalian target of rapamycin (mTOR) signaling and glucose metabolism, undertook proteomic examination with 2D gel-MS/MS of electron transport chain, and determined activities and protein expression of several key regulatory enzymes of glucose oxidative metabolism. To gain insight into the molecular mechanism underlying hypoxia-induced liver metabolic adaptation, we treated a subset of mice with rapamycin (0.5 mg/kg/day) to inhibit mTOR postnatally. Rapamycin-treated mice showed lower birth weight, lower body weight, and liver growth retardation in a pattern similar to that observed in the hypoxic mice at P30. Rapamycin treatment led to differential impact on the cytoplasmic and mitochondrial pathways of glucose metabolism. Our results suggest a decrease in mTOR activity as part of the mechanisms underlying hypoxia-induced changes in the activities of glycolytic and TCA cycle enzymes in liver. Chronic postnatal hypoxia induces mTOR-dependent differential effects on liver glycolytic and TCA cycle enzymes and as such should be studied further as they have pathophysiological implications in hepatic diseases and conditions in which hypoxia plays a role.  相似文献   
993.
994.
Multidrug resistance proteins (MRPs) are ATP-dependent export pumps that mediate the export of organic anions. ABCC1 (MRP1), ABCC2 (MRP2) and ABCC3 (MRP3) are all able to facilitate the efflux of anionic conjugates including glutathione (GSH), glucuronide and sulfate conjugates of xenobiotics and endogenous molecules. Earlier studies showed that ABCC4 functions as an ATP-driven export pump for cyclic AMP and cyclic GMP, as well as estradiol-17-beta-D-glucuronide. However, it was unclear if other conjugated metabolites can be transported by ABCC4. Hence in this study, a fluorescent substrate, bimane-glutathione (bimane-GS) was used to further examine the transport activity of ABCC4. Using cells stably overexpressing ABCC4, this study shows that ABCC4 can facilitate the efflux of the glutathione conjugate, bimane-glutathione. Bimane-glutathione efflux increased with time and >85% of the conjugate was exported after 15min. This transport was abolished in the presence of 2.5microM carbonylcyanide m-chlorophenylhydrasone (CCCP), an uncoupler of oxidative phosphorylation. Inhibition was also observed with known inhibitors of MRP transporters including benzbromarone, verapamil and indomethacin. In addition, 100microM methotrexate, an ABCC4 substrate or 100microM 6-thioguanine (6-TG), a compound whose monophosphate metabolite is an ABCC4 substrate, reduced efflux by >40%. A concentration-dependent inhibition of bimane-glutathione efflux was observed with 1-chloro-2,4-dinitrobenzene (CDNB) which is metabolized intracellularly to the glutathione conjugate, 2,4-dinitrophenyl-glutathione (DNP-GS). The determination that ABCC4 can mediate the transport of glucuronide and glutathione conjugates indicates that ABCC4 may play a role in the cellular extrusion of Phase II detoxification metabolites.  相似文献   
995.
996.
997.
Non-high-density lipoprotein cholesterol(NHDL) is an independent and superior predictor of CVD risk as compared to low-density lipoprotein alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) to identify loci influencing baseline NHDL and its postprandial lipemic (PPL) response. We carried out GWAS in 4,241 participants of European descent. Our discovery cohort included 928 subjects from the Genetics of Lipid-Lowering Drugs and Diet Network Study. Our replication cohorts included 3,313 subjects from the Heredity and Phenotype Intervention Heart Study and Family Heart Study. A linear mixed model using the kinship matrix was used for association tests. The best association signal was found in a tri-genic region at RHOQ-PIGF-CRIPT for baseline NHDL (lead SNP rs6544903, discovery p = 7e?7, MAF = 2 %; validation p = 6e?4 at 0.1 kb upstream neighboring SNP rs3768725, and 5e?4 at 0.7 kb downstream neighboring SNP rs6733143, MAF = 10 %). The lead and neighboring SNPs were not perfect surrogate proxies to each other (D′ = 1, r 2 = 0.003) but they seemed to be partially dependent (likelihood ration test p = 0.04). Other suggestive loci (discovery p < 1e?6) included LOC100419812 and LOC100288337 for baseline NHDL, and LOC100420502 and CDH13 for NHDL PPL response that were not replicated (p > 0.01). The current and first GWAS of NHDL yielded an interesting common variant in RHOQ-PIGF-CRIPT influencing baseline NHDL levels. Another common variant in CDH13 for NHDL response to dietary high-fat intake challenge was also suggested. Further validations for both loci from large independent studies, especially interventional studies, are warranted.  相似文献   
998.
The combined abuse of recreational drugs such as ketamine (Ket) and amphetamine (Amph) should be seriously considered important social and health issues. Numerous studies have documented the behavioral and neurochemical changes associated with polydrug administration; however, most studies have only examined the acute effects. The consequences following chronic repetitive polydrug use are less studied. In the present study, intraperitoneal injections of saline, Amph (5 mg/kg), low dose Ket (LK, 10 mg/kg), high dose Ket (HK, 50 mg/kg), or Amph plus LK or HK (ALK or AHK) were conducted twice a day for three consecutive days, and one final treatment was administered on day 4. After seven total treatments, animal behaviors, including locomotion, stereotypy and ataxia, were examined in a novel open field. The expression of GAD67 and dopamine (DA) levels were assessed in the striatum and motor-related cortices using immunohistochemistry and high-performance liquid chromatography. Drug-induced hyperactivities and Amph-mediated potentiation of Ket-triggered ataxia manifested after repeated drug treatments. A significant increase in the number of GAD67-positive puncta in the striatum and motor-related cortices was observed, suggesting a neural adaptive change in the GABAergic system. Four hours after the final treatment, while the behavioral hyperactivities had ceased, considerable changes were still evident in the motor-related cortices, suggesting modulation to the DAergic system. Together, our results show the interactive effects of these two drugs in behavioral and neurochemical aspects and neural adaptive changes in the GABAergic and DAergic systems.  相似文献   
999.
Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase of Trypanosoma brucei (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of T. brucei. The ablation of TbSPPS gene expression by RNA interference increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking its endogenous generation and excretion. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the downregulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites strongly suggest that TbSPPS and UQ synthesis are the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target.  相似文献   
1000.

Background

Although the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region.

Results

We found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion.

Conclusions

Through the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号