首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2662篇
  免费   214篇
  国内免费   250篇
  2024年   6篇
  2023年   47篇
  2022年   106篇
  2021年   156篇
  2020年   136篇
  2019年   139篇
  2018年   133篇
  2017年   114篇
  2016年   124篇
  2015年   167篇
  2014年   210篇
  2013年   203篇
  2012年   235篇
  2011年   223篇
  2010年   124篇
  2009年   120篇
  2008年   109篇
  2007年   106篇
  2006年   108篇
  2005年   74篇
  2004年   65篇
  2003年   65篇
  2002年   47篇
  2001年   41篇
  2000年   36篇
  1999年   31篇
  1998年   22篇
  1997年   28篇
  1996年   21篇
  1995年   17篇
  1994年   24篇
  1993年   12篇
  1992年   16篇
  1991年   14篇
  1990年   7篇
  1989年   7篇
  1988年   9篇
  1987年   8篇
  1986年   4篇
  1985年   5篇
  1983年   2篇
  1982年   2篇
  1979年   3篇
排序方式: 共有3126条查询结果,搜索用时 125 毫秒
71.
HNP1 is a human alpha defensin that forms dimers and multimers governed by hydrophobic residues, including Tyr16, Ile20, Leu25, and Phe28. Previously, alanine scanning mutagenesis identified each of these residues and other hydrophobic residues as important for function. Here we report further structural and functional studies of residues shown to interact with one another across oligomeric interfaces: I20A-HNP1 and L25A-HNP1, plus the double alanine mutants I20A/L25A-HNP1 and Y16A/F28A-HNP1, and the quadruple alanine mutant Y16A/I20A/L25A/F28A-HNP1. We tested binding to HIV-1 gp120 and HNP1 by surface plasmon resonance, binding to HIV-1 gp41 and HNP1 by fluorescence polarization, inhibition of anthrax lethal factor, and antibacterial activity using the virtual colony count assay. Similar to the previously described single mutant W26A-HNP1, the quadruple mutant displayed the least activity in all functional assays, followed by the double mutant Y16A/F28A-HNP1. The effects of the L25A and I20A single mutations were milder than the double mutant I20A/L25A-HNP1. Crystallographic studies confirmed the correct folding and disulfide pairing, and depicted an array of dimeric and tetrameric structures. These results indicate that side chain hydrophobicity is the critical factor that determines activity at these positions.  相似文献   
72.
Yu  Ziqiang  Zhan  Changsheng  Du  Hexi  Zhang  Ligang  Liang  Chaozhao  Zhang  Li 《Molecular and cellular biochemistry》2020,468(1-2):169-183
Molecular and Cellular Biochemistry - Population data have consistently demonstrated a correlation between circulating branched-chain amino acids (BCAA) and insulin resistance. Most recently valine...  相似文献   
73.
74.
Colorectal cancer is one of the most common and leading malignancies globally. Long noncoding RNAs (lncRNAs) function as potentially critical regulator in colorectal cancer. LINC01234, a novel lncRNA in tumor biology, regulates the progression of various tumors. However, the tumorigenic mechanism of LINC01234 in colorectal cancer is still unclear. This study was performed with the aim to prospectively investigate clinical significance, effect, and mechanism of lncRNA LINC01234 in colorectal cancer. First, we found that LINC01234, localized in the cytoplasm, was increased in both colorectal cancer cell lines and tissues. Subsequent functional assays suggested LINC01234 knockdown suppressed cell proliferation, migration, and invasion of colorectal cancer cells, while blocked cell cycle and induced cell apoptosis. Moreover, we identified that miR-1284 was target of LINC01234, we further demonstrated a negative correlation with LINC01234 in colorectal cancer tissues and cells. Furthermore, miR-1284 targeted and suppressed tumor necrosis factor receptor–associated factor 6 (TRAF6). Loss-of-function assay revealed that LINC01234 silencing suppressed colorectal cancer progression through inhibition of miR-1284. In vivo subcutaneous xenotransplanted tumor model indicated LINC01234 knockdown inhibited in vivo tumorigenic ability of colorectal cancer via downregulation of TRAF6. Collectively, this study clarified the biological significance of LINC01234/miR-1284/TRAF6 axis in colorectal cancer progression, providing insights into LINC01234 as novel potential therapeutic target for colorectal cancer therapeutic from bench to clinic.  相似文献   
75.
Optimal production of bispecific antibodies (bsAb) requires efficient and tailored co-expression and assembly of two distinct heavy and two distinct light chains. Here, we describe a novel technology to modulate the translational strength of antibody chains via Kozak sequence variants to produce bsAb in a single cell line. In this study, we designed and screened a large Kozak sequence library to identify 10 independent variants that can modulate protein expression levels from approximately 0.2 to 1.3-fold compared with the wild-type sequence in transient transfection. We used a combination of several of these variants, covering a wide range of translational strength, to develop stable single cell Chinese hamster ovary bispecific cell lines and compared the results with those obtained from the wild-type sequence. A significant increase in bispecific antibody assembly with a concomitant reduction in the level of product-related impurities was observed. Our findings suggest that for production of bsAb it can be advantageous to modify translational strength for selected protein chains to improve overall yield and product quality. By extension, tuning of translational strength can also be applied to improving the production of a wide variety of heterologous proteins.  相似文献   
76.
77.
Intramuscular fat (IMF) shortage causes the lack of juiciness and tenderness of goat meat, while peroxisome proliferator-activated receptor gamma 1 (PPARγ1) and gamma 2 (PPARγ2) play key roles in lipid metabolism. Nevertheless, their expression patterns and the relationship with IMF have been poorly exposed. Using quantitative polymerase chain reaction (qPCR), classical Soxhlet extraction, and in situ hybridization, we demonstrated that among 13 goat tissues, expression of PPARγ1 was dramatically higher than that of PPARγ2 except for lung. We further demonstrated the expression patterns of PPARγ1 and PPARγ2 and their negative association with intramuscular fat content in three goat muscles with kids growing. Meanwhile, PPARγ expression was located in the connective tissues. These results suggest that PPARγ1 is rather active for most tissues of goat, and closely related with the muscular fat metabolism during early postnatal life, but a more direct proof remains to be provided.  相似文献   
78.
79.
Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca2+) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, l-type calcium channel currents were detected by patch–clamp, and intracellular Ca2+ concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca2+ concentration by inhibiting Ca2+ influx partly through l-type calcium channel as well as promoting Ca2+ efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy.  相似文献   
80.
Fungal infections are on the rise, with mortality above 30% in patients with septic Candida infections. Mutants lacking V-ATPase activity are avirulent and fail to acidify endomembrane compartments, exhibiting pleiotropic defects in secretory, endosomal, and vacuolar pathways. However, the individual contribution of organellar acidification to virulence and its associated traits is not known. To dissect their separate roles in Candida albicans pathogenicity we generated knock-out strains for the V0 subunit a genes VPH1 and STV1, which target the vacuole and secretory pathway, respectively. While the two subunits were redundant in many vma phenotypes, such as alkaline pH sensitivity, calcium homeostasis, respiratory defects, and cell wall integrity, we observed a unique contribution of VPH1. Specifically, vph1Δ was defective in acidification of the vacuole and its dependent functions, such as metal ion sequestration as evidenced by hypersensitivity to Zn2+ toxicity, whereas stv1Δ resembled wild type. In growth conditions that elicit morphogenic switching, vph1Δ was defective in forming hyphae whereas stv1Δ was normal or only modestly impaired. Host cell interactions were evaluated in vitro using the Caco-2 model of intestinal epithelial cells, and murine macrophages. Like wild type, stv1Δ was able to inflict cellular damage in Caco-2 and macrophage cells, as assayed by LDH release, and escape by filamentation. In contrast, vph1Δ resembled a vma7Δ mutant, with significant attenuation in host cell damage. Finally, we show that VPH1 is required for fungal virulence in a murine model of systemic infection. Our results suggest that vacuolar acidification has an essential function in the ability of C. albicans to form hyphae and establish infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号