首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4248篇
  免费   375篇
  国内免费   374篇
  4997篇
  2024年   8篇
  2023年   57篇
  2022年   121篇
  2021年   217篇
  2020年   144篇
  2019年   185篇
  2018年   180篇
  2017年   139篇
  2016年   201篇
  2015年   266篇
  2014年   283篇
  2013年   325篇
  2012年   365篇
  2011年   335篇
  2010年   211篇
  2009年   188篇
  2008年   236篇
  2007年   173篇
  2006年   188篇
  2005年   162篇
  2004年   143篇
  2003年   117篇
  2002年   119篇
  2001年   101篇
  2000年   86篇
  1999年   83篇
  1998年   49篇
  1997年   48篇
  1996年   42篇
  1995年   36篇
  1994年   31篇
  1993年   24篇
  1992年   21篇
  1991年   25篇
  1990年   12篇
  1989年   7篇
  1988年   10篇
  1987年   15篇
  1986年   8篇
  1985年   8篇
  1984年   8篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有4997条查询结果,搜索用时 0 毫秒
51.
Deformable energy storage devices are needed to power next‐generation wearable electronics that interface intimately with human skin. Currently, deformable energy storage devices demonstrate poor performance compared to their rigid lithium‐ion counterparts, forcing wearable manufacturers to design their devices around bulky battery compartments. However, technological advances to create deformable batteries at the component and device level have yielded continuous improvement in stretchable batteries over the last five years. In this Essay, the major strategies at the component and device level that have been successfully employed to create stretchable batteries are reviewed. The outstanding challenges facing deformable energy storage are also discussed, namely, energy density, packaging, delamination, device integration, and manufacturing. This Essay will give researchers who are interested in contributing to the development of deformable batteries a cursory understanding of the most successful strategies to date, and provide insights into the most important directions to pursue in the future.  相似文献   
52.
53.
Root-associated microbiomes play significant roles in plant productivity, health and ecological services. However, our current understanding of the microbial assemblages in the rhizosphere and endosphere of herbage is still limited. To gain insights into these microbial assemblages, Illumina MiSeq high-throughput sequencing was performed to investigate the characteristics of microbial communities of an herbage, Leymus chinensis. Hierarchical clustering analysis and principal coordinate analysis (PCoA) results showed that microbial communities of the rhizosphere and endosphere samples were clearly distinguished. Rhizosphere soil communities showed a greater sensitivity than root endosphere communities using linear discriminant analysis (LDA) effect size (LEfSe). Rhizosphere and endosphere communities performed their respective functions in the soil as a cohesive collective, and Rhizobiales were observed to function as generalists. Redundancy analysis (RDA) and variance partitioning analysis (VPA) results revealed that the contribution of the interaction between soil physicochemical parameters and soil enzymes was greater than their individual contributions. In summary, this study is the first to elucidate the microbial diversity and community structure of L. chinensis and compare the diversity and composition between rhizospheric and endosphere microbiomes.  相似文献   
54.
Saccharomyces cerevisiae is the preferred source of RNA derivatives, which are widely used as supplements for foods and pharmaceuticals. As the most abundant RNAs, the ribosomal RNAs (rRNAs) transcribed by RNA polymerase I (Pol I) have no 5′ caps, thus cannot be translated to proteins. To screen high-nucleic-acid content yeasts more efficiently, a cap-independent protein expression system mediated by Pol I has been designed and established to monitor the regulatory changes of rRNA synthesis by observing the variation in the reporter genes expression. The elements including Pol I-recognized rDNA promoter, the internal ribosome entry site from cricket paralytic virus which can recruit ribosomes internally, reporter genes (URA3 and yEGFP3), oligo-dT and an rDNA terminator were ligated to a yeast episomal plasmid. This system based on the URA3 gene worked well by observing the growth phenotype and did not require the disruption of cap-dependent initiation factors. The fluorescence intensity of strains expressing the yEGFP3 gene increased and drifted after mutagenesis. Combined with flow cytometry, cells with higher GFP level were sorted out. A strain showed 58% improvement in RNA content and exhibited no sequence alteration in the whole expression cassette introduced. This study provides a novel strategy for breeding high-nucleic-acid content yeasts.  相似文献   
55.
56.
Li  Yongping  Peng  Xiao  Song  Jun  Yuan  Yufeng  Liu  Junxian  Qu  Junle 《Plasmonics (Norwell, Mass.)》2020,15(1):135-143
Plasmonics - This study investigates a versatile deep-ultraviolet (DUV) surface plasmon resonance (SPR) sensor by integrating a few graphene layers into low-cost aluminum (Al) thin film. The...  相似文献   
57.
Dendrolimus spp. are important destructive pests of conifer forests, and Dendrolimus punctatus Walker (Lepidoptera; Lasiocampidae) is the most widely distributed Dendrolimus species. During periodic outbreaks, this species is said to make “fire without smoke” because large areas of pine forest can be quickly and heavily damaged. Yet, little is known about the molecular mechanisms that underlie the unique ecological characteristics of this forest insect. Here, we combined Pacific Biosciences (PacBio) RSII single‐molecule long reads and high‐throughput chromosome conformation capture (Hi‐C) genomics‐linked reads to produce a high‐quality, chromosome‐level reference genome for D. punctatus. The final assembly was 614 Mb with contig and scaffold N50 values of 1.39 and 22.15 Mb, respectively, and 96.96% of the contigs anchored onto 30 chromosomes. Based on the prediction, this genome contained 17,593 protein‐coding genes and 56.16% repetitive sequences. Phylogenetic analyses indicated that D. punctatus diverged from the common ancestor of Hyphantria cunea, Spodoptera litura and Thaumetopoea pityocampa ~ 108.91 million years ago. Many gene families that were expanded in the D. punctatus genome were significantly enriched for the xenobiotic biodegradation system, especially the cytochrome P450 gene family. This high‐quality, chromosome‐level reference genome will be a valuable resource for understanding mechanisms of D. punctatus outbreak and host resistance adaption. Because this is the first Lasiocampidae insect genome to be sequenced, it also will serve as a reference for further comparative genomics.  相似文献   
58.
59.
60.
Incorporating male sterility into hybrid seed production reduces its cost and ensures high varietal purity. Despite these advantages, male‐sterile lines have not been widely used to produce tomato (Solanum lycopersicum) hybrid seeds. We describe the development of a biotechnology‐based breeding platform that utilized genic male sterility to produce hybrid seeds. In this platform, we generated a novel male‐sterile tomato line by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9)‐mediated mutagenesis of a stamen‐specific gene SlSTR1 and devised a transgenic maintainer by transforming male‐sterile plants with a fertility‐restoration gene linked to a seedling‐colour gene. Offspring of crosses between a hemizygous maintainer and the homozygous male‐sterile plant segregated into 50% non‐transgenic male‐sterile plants and 50% male‐fertile maintainer plants, which could be easily distinguished by seedling colour. This system has great practical potential for hybrid seed breeding and production as it overcomes the problems intrinsic to other male‐sterility systems and can be easily adapted for a range of tomato cultivars and diverse vegetable crops.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号