首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9176篇
  免费   702篇
  国内免费   879篇
  10757篇
  2024年   41篇
  2023年   171篇
  2022年   381篇
  2021年   609篇
  2020年   391篇
  2019年   445篇
  2018年   453篇
  2017年   333篇
  2016年   423篇
  2015年   602篇
  2014年   684篇
  2013年   718篇
  2012年   886篇
  2011年   780篇
  2010年   474篇
  2009年   398篇
  2008年   440篇
  2007年   384篇
  2006年   331篇
  2005年   278篇
  2004年   224篇
  2003年   190篇
  2002年   157篇
  2001年   110篇
  2000年   116篇
  1999年   110篇
  1998年   89篇
  1997年   92篇
  1996年   55篇
  1995年   56篇
  1994年   72篇
  1993年   36篇
  1992年   40篇
  1991年   37篇
  1990年   25篇
  1989年   31篇
  1988年   16篇
  1987年   15篇
  1986年   10篇
  1985年   20篇
  1984年   6篇
  1983年   8篇
  1982年   7篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1975年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
Electrocatalytic CO2 reduction (CO2R) coupled with renewable electricity has been considered as a promising route for the sustainability transition of energy and chemical industries. However, the unsatisfactory yield of desired products, particularly multicarbon (C2+) products, has hindered the implementation of this technology. This work describes a strategy to enhance the yield of C2+ product formation in CO2R by utilizing spatial confinement effects. The finite element simulation results suggest that increasing the number of shells in the catalyst wil lead to a high local concentration of *CO and promotes the formation of C2+ products. Inspired by this, Cu nanoparticles are synthesized with desired hollow multi-shell structures. The CO2 reduction results confirm that as the number of shells increase, the hollow multi-shell copper catalysts exhibit improved selectivity toward C2+ products. Specifically, the Cu catalyst with 4.4-shell achieved a high selectivity of over 80% toward C2+ at a current density of 900 mA cm−2. Evidence from in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy unveils that the multi-shell Cu catalyst exhibits an enhanced *COatop coverage and the stronger interaction with *COatop compared to commercial Cu, confirming the simulation results. Overall, the work promises an effective approach for boosting CO2R selectivity toward value-added chemicals.  相似文献   
102.
103.
Migration from rhizosphere to rhizoplane is a key selecting process in root microbiome assembly, but not fully understood. Rhizobiales members are overrepresented in the core root microbiome of terrestrial plants, and here we report a genome-wide transposon-sequencing of rhizoplane fitness genes of beneficial Sinorhizobium fredii on wild soybean, cultivated soybean, rice, and maize. There were few genes involved in broad-host-range rhizoplane colonization. The fadL mutant lacking a fatty acid transporter exhibited high colonization rates, while mutations in exoFQP (encoding membrane proteins directing exopolysaccharide polymerization and secretion), but not those in exo genes essential for exopolysaccharide biosynthesis, led to severely impaired colonization rates. This variation was not explainable by their rhizosphere and rhizoplane survivability, and associated biofilm and exopolysaccharide production, but consistent with their migration ability toward rhizoplane, and associated surface motility and the mixture of quorum-sensing AHLs (N-acylated-L-homoserine lactones). Genetics and physiology evidences suggested that FadL mediated long-chain AHL uptake while ExoF mediated the secretion of short-chain AHLs which negatively affected long-chain AHL biosynthesis. The fadL and exoF mutants had elevated and depleted extracellular long-chain AHLs, respectively. A synthetic mixture of long-chain AHLs mimicking that of the fadL mutant can improve rhizobial surface motility. When this AHL mixture was spotted into rhizosphere, the migration toward roots and rhizoplane colonization of S. fredii were enhanced in a diffusible way. This work adds novel parts managing extracellular AHLs, which modulate bacterial migration toward rhizoplane. The FadL-ExoFQP system is conserved in Alphaproteobacteria and may shape the “home life” of diverse keystone rhizobacteria.Subject terms: Microbial ecology, Functional genomics, Bacterial genetics  相似文献   
104.
Tropical lotus (Nelumbo) is an important and unique ecological type of lotus germplasm. Understanding the genetic relationship and diversity of the tropical lotus is necessary for its sustainable conservation and utilization. Using 42 EST-SSR (expressed sequence tag-simple sequence repeats) and 30 SRAP (sequence-related amplified polymorphism) markers, we assessed the genetic diversity and inferred the ancestry of representative tropical lotus from Thailand and Vietnam. In total, 164 and 41 polymorphic bands were detected in 69 accessions by 36 EST-SSR and seven SRAP makers, respectively. Higher genetic diversity was revealed in Thai lotus than in Vietnamese lotus. A Neighbor-Joining tree of five main clusters was constructed using combined EST-SSR and SRAP markers. Cluster I included 17 accessions of Thai lotus; cluster II contained three Thai accessions and 11 accessions from southern Vietnam; and cluster III was constituted by 13 accessions of seed lotus. Consistent with the results from the Neighbor-Joining tree, the genetic structure analysis showed that the genetic background of most Thai and Vietnamese lotus was pure, as artificial breeding has been rare in both countries. Furthermore, these analyses indicate that Thai and Vietnamese lotus germplasms belong to two different gene pools or populations. Most lotus accessions are genetically related to geographical distribution patterns in Thailand or Vietnam. Our findings showed that the origin or genetic relationships of some unidentified lotus sources can be evaluated by comparing morphological characteristics and the data of molecular markers. In addition, these findings provide reliable information for the targeted conservation of tropical lotus and parent selection in breeding novel cultivars of lotus.  相似文献   
105.
4种城市绿化树种叶片PAHs含量特征与叶面结构的关系   总被引:1,自引:0,他引:1  
彭钢  田大伦  闫文德  朱凡  梁小翠 《生态学报》2010,30(14):3700-3706
用气质联用仪测定了长沙市樟树(Cinnamomu camphora)、广玉兰(Magnolia grandiflora)、桂花(Opsmanthus fragrans)和红檵木(Redrlowered loropetalum)4个主要绿化树种叶片中PAHs含量,同时测定了叶片的气孔密度、气孔长宽比、叶片的宽长比和叶面积等叶面结构特征值,探讨了叶面结构与叶片中PAHs含量的关系。结果表明:红檵木叶片的PAHs含量最高,为11.13mg·kg-1,16种PAHs在4树种叶片中均有不同程度的检出,其中以3环和4环为主,菲的浓度最高。除桂花外,在气温较低的秋冬季节,其余3种植物叶片气孔密度大PAHs含量高。叶面宽长比、气孔长宽比均与叶片PAHs含量呈极显著正相关,而叶面积与PAHs含量呈极显著负相关。表明叶面结构是影响叶片PAHs含量的重要因素。研究结果可为城市绿化树种合理选择与配置提供科学依据。  相似文献   
106.
本文报道了球形芽孢杆菌、苏云金芽孢杆菌和森田芽孢杆菌三种昆虫病原菌的超氧化物歧化酶(SOD)的电泳图型及其同源性。实验证明B.S和B.tSOD分别具有Ef25~30、56.8和52.9特征酶带,B.mSOD也具有与B.T相同的特征酶带;免疫琼脂双扩散实验证明B.sSOD与B.T和B.mSOD无同源性,B.tSOD抗血清与B.sSOD抗原无沉淀反应,但与B.mSOD抗原产生沉淀反应,证明B.S与B.t和B.M的亲缘关系远,B.T和B.M的亲缘关系近。  相似文献   
107.
本文研究了球形芽孢杆菌(Bacillussphaericus)C3-41超氧化物歧化酶(SOD)的产生条件和部分特性。当C3-41菌株处于孢子囊中期时为产SOD酶高峰期,在30℃下的平板培养物及培养基起始pH为中性(pH7.0)时产生的SOD酶比活最高,经硫酸铵分级沉淀,DEAE-32离子交换层析和SephadexG-100凝胶过滤提纯了SOD酶。此酶属Mn-SOD,在25~35℃和pH5~9范围内较稳定,但在55℃下10min完全失活。  相似文献   
108.
As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.  相似文献   
109.
彩色真菌培养基具有选择性强、分辨率高、易生长、易观察的特点。在真菌培养方面优于其它培养基,其主要作用机理在于应用了化学生物效应促进真菌生长。  相似文献   
110.
Alzheimer’s disease (AD) involves the neurotoxic self-assembly of a 40 and 42 residue peptide, Amyloid-β (Aβ). Inherited early-onset AD can be caused by single point mutations within the Aβ sequence, including Arctic (E22G) and Italian (E22K) familial mutants. These mutations are heterozygous, resulting in an equal proportion of the WT and mutant Aβ isoform expression. It is therefore important to understand how these mixtures of Aβ isoforms interact with each other and influence the kinetics and morphology of their assembly into oligomers and fibrils. Using small amounts of nucleating fibril seeds, here, we systematically monitored the kinetics of fibril formation, comparing self-seeding with cross-seeding behavior of a range of isoform mixtures of Aβ42 and Aβ40. We confirm that Aβ40(WT) does not readily cross-seed Aβ42(WT) fibril formation. In contrast, fibril formation of Aβ40(Arctic) is hugely accelerated by Aβ42(WT) fibrils, causing an eight-fold reduction in the lag-time to fibrillization. We propose that cross-seeding between the more abundant Aβ40(Arctic) and Aβ42(WT) may be important for driving early-onset AD and will propagate fibril morphology as indicated by fibril twist periodicity. This kinetic behavior is not emulated by the Italian mutant, where minimal cross-seeding is observed. In addition, we studied the cross-seeding behavior of a C-terminal-amidated Aβ42 analog to probe the coulombic charge interplay between Glu22/Asp23/Lys28 and the C-terminal carboxylate. Overall, these studies highlight the role of cross-seeding between WT and mutant Aβ40/42 isoforms, which can impact the rate and structure of fibril assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号