首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108034篇
  免费   8380篇
  国内免费   9028篇
  125442篇
  2024年   240篇
  2023年   1418篇
  2022年   3260篇
  2021年   5512篇
  2020年   3779篇
  2019年   4680篇
  2018年   4429篇
  2017年   3239篇
  2016年   4592篇
  2015年   6676篇
  2014年   7849篇
  2013年   8297篇
  2012年   9979篇
  2011年   8978篇
  2010年   5547篇
  2009年   4971篇
  2008年   5711篇
  2007年   5130篇
  2006年   4456篇
  2005年   3494篇
  2004年   2969篇
  2003年   2719篇
  2002年   2273篇
  2001年   1867篇
  2000年   1694篇
  1999年   1669篇
  1998年   1035篇
  1997年   1001篇
  1996年   941篇
  1995年   821篇
  1994年   787篇
  1993年   617篇
  1992年   819篇
  1991年   617篇
  1990年   466篇
  1989年   443篇
  1988年   354篇
  1987年   344篇
  1986年   266篇
  1985年   286篇
  1984年   156篇
  1983年   161篇
  1982年   99篇
  1981年   85篇
  1980年   60篇
  1979年   77篇
  1977年   59篇
  1975年   56篇
  1974年   52篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Lycoris radiata is a main source of Amaryllidaceae alkaloids; however, the low content of these alkaloids in planta remains a limit to their pharmaceutical development and utilization. The accumulation of secondary metabolites can be enhanced in plants inoculated with fungal endophytes. In this study, we analysed the diversity of culturable fungal endophytes in different organs of L. radiata. Then, by analysing the correlation between the detectable rate of each fungal species and the content of each tested alkaloid, we proposed several fungal candidates implicated in the increase of alkaloid accumulation. This was verified by inoculating these candidates to L. radiata plants. Based on the results of two independent experiments conducted in May 2018 and October 2019, the individual inoculation of nine fungal endophytes significantly increased the total content of the tested alkaloids in the entire L. radiata plants. This is the first study in L. radiata to show that fungal endophytes are able to improve the accumulation of various alkaloids. Therefore, our results provide insights into a better understanding of interactions between plants and fungal endophytes and suggest an effective strategy for enhancing the alkaloid content in the cultivation of L. radiata.  相似文献   
952.
The jasmonic acid (JA) pathway plays crucial roles in plant defence against pathogens and herbivores. Rice stripe virus (RSV) is the type member of the genus Tenuivirus. It is transmitted by the small brown planthopper (SBPH) and causes damaging epidemics in East Asia. The role(s) that JA may play in the tripartite interaction against RSV, its host, and vector are poorly understood. Here, we found that the JA pathway was induced by RSV infection and played a defence role against RSV. The coat protein (CP) was the major viral component responsible for inducing the JA pathway. Methyl jasmonate treatment attracted SBPHs to feed on rice plants while a JA-deficient mutant was less attractive than wild-type rice. SBPHs showed an obvious preference for feeding on transgenic rice lines expressing RSV CP. Our results demonstrate that CP is an inducer of the JA pathway that activates plant defence against RSV while also attracting SBPHs to feed and benefitting viral transmission. This is the first report of the function of JA in the tripartite interaction between RSV, its host, and its vector.  相似文献   
953.
954.
955.
Eukaryotic organisms activate conserved signalling networks to maintain genomic stability in response to DNA genotoxic stresses. However, the coordination of this response pathway in fungal pathogens remains largely unknown. In the present study, we investigated the mechanism by which the northern corn leaf blight pathogen Setosphaeria turcica controls maize infection and activates self-protection pathways in response to DNA genotoxic insults. Appressorium-mediated maize infection by S. turcica was blocked by the S-phase checkpoint. This repression was dependent on the checkpoint central kinase Ataxia Telangiectasia and Rad3 related (ATR), as inhibition of ATR activity or knockdown of the ATR gene recovered appressorium formation in the presence of genotoxic reagents. ATR promoted melanin biosynthesis in S. turcica as a defence response to stress. The melanin biosynthesis genes StPKS and StLac2 were induced by the ATR-mediated S-phase checkpoint. The responses to DNA genotoxic stress were conserved in a wide range of phytopathogenic fungi, including Cochliobolus heterostrophus, Cochliobolus carbonum, Alternaria solani, and Alternaria kikuchiana, which are known causal agents for plant diseases. We propose that in response to genotoxic stress, phytopathogenic fungi including S. turcica activate an ATR-dependent pathway to suppress appressorium-mediated infection and induce melanin-related self-protection in addition to conserved responses in eukaryotes.  相似文献   
956.
Rice tiller angle determines plant growth density and further contributes grain production. Although a few genes have been characterized to regulate tiller angle in rice, the molecular mechanism underlying the control of tiller angle via microRNA is poorly understood. Here, we report that rice tiller angle is controlled by OsmiR167a‐targeted auxin response factors OsARF12, OsARF17 and OsARF25. In the overexpression of OsMIR167a plants, the expression of OsARF12, OsARF17 and OsARF25 was severely repressed and displayed larger tiller angle as well as the osarf12/osarf17 and osarf12/ osarf25 plants. In addition, those plants showed compromised abnormal auxin distribution and less sensitive to gravity. We also demonstrate that OsARF12, OsARF17 and OsARF25 function redundantly and might be involved in HSFA2D and LAZY1‐dependent asymmetric auxin distribution pathway to control rice tiller angle. Our results reveal that OsmiR167a represses its targets, OsARF12, OsARF17 and OsARF25, to control rice tiller angle by fine‐tuning auxin asymmetric distribution in shoots.  相似文献   
957.
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.  相似文献   
958.
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号