首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14175篇
  免费   1364篇
  国内免费   2212篇
  2024年   49篇
  2023年   242篇
  2022年   562篇
  2021年   924篇
  2020年   730篇
  2019年   843篇
  2018年   716篇
  2017年   562篇
  2016年   720篇
  2015年   1043篇
  2014年   1278篇
  2013年   1267篇
  2012年   1560篇
  2011年   1488篇
  2010年   896篇
  2009年   757篇
  2008年   833篇
  2007年   703篇
  2006年   571篇
  2005年   433篇
  2004年   318篇
  2003年   284篇
  2002年   205篇
  2001年   94篇
  2000年   103篇
  1999年   104篇
  1998年   77篇
  1997年   62篇
  1996年   54篇
  1995年   43篇
  1994年   39篇
  1993年   25篇
  1992年   31篇
  1991年   33篇
  1990年   22篇
  1989年   16篇
  1988年   12篇
  1987年   7篇
  1986年   3篇
  1985年   19篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
  1938年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The inhibitory effect of two chemokine decoy receptors (CDRs), DARC and D6, on breast cancer metastasis is mainly due to their ability to sequester pro-malignant chemokines. We hypothesized that genetic variants in the DARC and CCBP2 (encoding D6) genes may be associated with breast cancer progression. In the present study, we evaluated the genetic contributions of DARC and CCBP2 to metastatic potential, indicated by lymph node metastasis (LNM). Ten single-nucleotide polymorphisms (SNPs) (potentially functional SNPs and block-based tagging SNPs) in DARC and CCBP2 were genotyped in 785 breast cancer patients who had negative lymph nodes and 678 patients with positive lymph nodes. Two non-synonymous SNPs, rs12075 (G42D) in DARC and rs2228468 (S373Y) in CCBP2, were observed to be associated with LNM in univariate analysis and remained significant after adjustment for conventional clinical risk factors, with odds ratios (ORs) of 0.54 (95% confidence interval [CI], 0.37 to 0.79) and 0.78 (95% CI, 0.62 to 0.98), respectively. Additional functional experiments revealed that both of these significant SNPs could affect metastasis of breast cancer in xenograft models by differentially altering the chemokine sequestration ability of their corresponding proteins. Furthermore, heterozygous GD genotype of G42D on human erythrocytes had a significantly stronger chemokine sequestration ability than homozygous GG of G42D ex vivo. Our data suggest that the genetic variants in the CDR genes are probably associated with the varied metastatic potential of breast cancer. The underlying mechanism, though it needs to be further investigated, may be that CDR variants could affect the chemokine sequestration ability of CDR proteins.  相似文献   
102.
103.
104.
105.
In multicellular organisms, the balance between cell division and differentiation determines organ size, and represents a central unknown in developmental biology. In Arabidopsis roots, this balance is mediated between cytokinin and auxin through a regulatory circuit converging on the IAA3/SHORT HYPOCOTYL 2 (SHY2) gene. Here, we show that crosstalk between brassinosteroids (BRs) and auxin occurs in the vascular transition zone to promote root meristem development. We found that BR increases root meristem size by up‐regulating expression of the PINFORMED 7 (PIN7) gene and down‐regulating expression of the SHY2 gene. In addition, BES1 could directly bind to the promoter regions of both PIN7 and SHY2, indicating that PIN7 and SHY2 mediate the BR‐induced growth of the root meristem by serving as direct targets of BES1. Moreover, the PIN7 overexpression and loss‐of‐function SHY2 mutant were sensitive to the effects of BR and could partially suppress the short‐root phenotypes associated with deficient BR signaling. Interestingly, BRs could inhibit the accumulation of SHY2 protein in response to cytokinin. Taken together, these findings suggest that a complex equilibrium model exists in which regulatory interactions among BRs, auxin, and cytokinin regulate optimal root growth.  相似文献   
106.
Low molecular weight secreted peptides have recently been shown to affect multiple aspects of plant growth, development, and defense responses.Here, we performed stepwise BLAST filtering to identify unannotated peptides from the Arabidopsis thaliana protein database and uncovered a novel secreted peptide family, secreted transmembrane peptides(STMPs). These low molecular weight peptides, which consist of an N-terminal signal peptide and a transmembrane domain, were primarily localized to extracellular compartments but were also detected in the endomembrane system of the secretory pathway, including the endoplasmic reticulum and Golgi. Comprehensive bioinformatics analysis identified 10 STMP family members that are specific to the Brassicaceae family. Brassicaceae plants showed dramatically inhibited root growth uponexposure to chemically synthesized STMP1 and STMP2.Arabidopsis overexpressing STMP1, 2, 4, 6, or 10 exhibited severely arrested growth, suggesting that STMPs are involved in regulating plant growth and development. In addition, in vitro bioassays demonstrated that STMP1,STMP2, and STMP10 have antibacterial effects against Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum, Bacillus subtilis, and Agrobacterium tumefaciens, demonstrating that STMPs are antimicrobial peptides. These findings suggest that STMP family members play important roles in various developmental events and pathogen defense responses in Brassicaceae plants.  相似文献   
107.
Rice is a major source of cadmium(Cd) intake for Asian people. Indica rice usually accumulates more Cd in shoots and grains than Japonica rice. However, underlying genetic bases for differential Cd accumulation between Indica and Japonica rice are still unknown. In this study, we cloned a quantitative trait locus(QTL) grain Cd concentration on chromosome 7(GCC7) responsible for differential grain Cd accumulation between two rice varieties by performing QTL analysis and map-based cloning. We found that the two GCC7 alleles, GCC7~(PA64s) and GCC7~(93-11), had different promoter activity of OsHMA3,leading to different OsHMA3 expression and different shoot and grain Cd concentrations. By analyzing the distribution of different haplotypes of GCC7 among diverse rice accessions, we discovered that the high and low Cd accumulation alleles, namely GCC7~(93-11) and GCC7~(PA64s), were preferentially distributed in Indica and Japonica rice,respectively. We further showed that the GCC7~(PA64s)allele can be used to replace the GCC7~(93-11) allele in the super cultivar 93-11 to reduce grain Cd concentration without adverse effect on agronomic traits. Our results thus reveal that the QTL GCC7 with sequence variation in the OsHMA3 promoter is an important determinant controlling differential grain Cd accumulation between Indica and Japonica rice.  相似文献   
108.
Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms underlying colonization of Acremonium spp. remain unclear.In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng,enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin biosynthesis in P. notoginseng. Acremonium sp. D212 could secrete indole-3-acetic acid(IAA) and jasmonic acid(JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. notoginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate(Me JA)(2–15 μmol/L) and 1-naphthalenacetic acid(NAA)(10–20 μmol/L). Moreover, the roots of the JA signaling-defective coi1-18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild-type Nipponbare and mi R393 boverexpressing lines, and the colonization was rescued by Me JA but not by NAA. It suggests that the cross-talk between JA signaling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants.  相似文献   
109.
110.
Zhang  Fan  Li  Chunbo  Deng  Kui  Wang  Zhuozhong  Zhao  Weiwei  Yang  Kai  Yang  Chunyan  Rong  Zhiwei  Cao  Lei  Lu  Yaxin  Huang  Yue  Han  Peng  Li  Kang 《Metabolomics : Official journal of the Metabolomic Society》2020,16(3):1-6
Introduction

Untargeted metabolomics intends to objectively analyze a wide variety of compounds. Their diverse physicochemical properties make it difficult to choose an appropriate reconstitution solvent after sample evaporation without influencing the chromatography or hamper column sorbent integrity.

Objectives

The study aimed to identify the most appropriate reconstitution solvent for blood plasma samples in terms of feature recovery, four endogenous compounds, and one selected internal standard.

Methods

We investigated several reconstitution solvent mixtures containing acetonitrile and methanol to resolve human plasma extract and evaluated them concerning the peak areas of tryptophan-d5, glucose, creatinine, palmitic acid, and the phophatidylcholine PC(P-16:0/P-16:0), as well as the total feature count

Results

Results indicated that acetonitrile containing 30% methanol was best suited to match all tested criteria at least for human blood plasma samples.

Conclusion

Despite identifying the mixture of acetonitrile and methanol being suitable as solvent for human blood plasma extracts, we recommend to systematically test for an appropriate reconstitution solvent for each analyzed biomatrix.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号