首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   6篇
  国内免费   9篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   3篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   8篇
  2012年   11篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
61.
Lu W  Kim KA  Liu J  Abo A  Feng X  Cao X  Li Y 《FEBS letters》2008,582(5):643-650
R-spondins are a new group of Wnt/beta-catenin signaling agonists, however, the role of these proteins in bone remains unclear. We reported herein that R-sponin1 (Rspo1) acted synergistically with Wnt3A to activate Wnt/beta-catenin signaling in the uncommitted mesenchymal C2C12 cells. Furthermore, we found that Rspo1 at concentrations as low as 10 ng/ml synergized strongly with Wnt3A to induce C2C12 osteoblastic differentiation and osteoprotegerin expression. These events were blocked by Wnt/beta-catenin signaling antagonist Dickkopf-1. Finally, we demonstrated that Rspo1 synergized with Wnt3A to induce primary mouse osteoblast differentiation. Together, these findings suggest that Rpos1 may play an important role in bone remodeling.  相似文献   
62.
The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family and is closely related to LRP. It was discovered as a putative tumor suppressor and is frequently inactivated in lung cancer cells. In the present study, we used an LRP1B minireceptor (mLRP1B4), which mimics the function and trafficking of LRP1B, to explore the roles of LRP1B on the plasminogen activation system. We found that mLRP1B4 and urokinase plasminogen activator receptor (uPAR) form immunoprecipitable complexes on the cell surface in the presence of complexes of uPA and its inhibitor, plasminogen activator inhibitor type-1 (PAI-1). However, compared with cells expressing the analogous LRP minireceptor (mLRP4), cells expressing mLRP1B4 display a substantially slower rate of uPA.PAI-1 complex internalization. Expression of mLRP1B4, or an mLRP4 mutant deficient in endocytosis, leads to an accumulation of uPAR at the cell surface and increased cell-associated uPA and PAI-1 when compared with cells expressing mLRP4. In addition, we found that expression of mLRP1B or the mLRP4 endocytosis mutant impairs the regeneration of unoccupied uPAR on the cell surface and that this correlates with a diminished rate of cell migration. Taken together, these results demonstrate that LRP1B can function as a negative regulator of uPAR regeneration and cell migration.  相似文献   
63.
Megalin and the low-density lipoprotein (LDL) receptor-related protein (LRP) are two large members of the LDL receptor family that bind and endocytose multiple ligands. The molecular and cellular determinants that dictate the sorting behavior of these receptors in polarized epithelial cells are largely unknown. Megalin is found apically distributed, whereas the limited information on LRP indicates its polarity. We show here that in Madin-Darby canine kidney cells, both endogenous LRP and a minireceptor containing the fourth ligand-binding, transmembrane and LRP cytosolic domains were basolaterally sorted. In contrast, minireceptors that either lacked the cytoplasmic domain or had the tyrosine in the NPTY motif mutated to alanine showed a preferential apical distribution. In LLC-PK1 cells, endogenous megalin was found exclusively in the apical membrane. Studies were also done using chimeric proteins harboring the cytosolic tail of megalin, one with the fourth ligand-binding domain of LRP and the other two containing the green fluorescent protein as the ectodomain and transmembrane domains of either megalin or LRP. Findings from these experiments showed that the cytosolic domain of megalin is sufficient for apical sorting, and that the megalin transmembrane domain promotes association with lipid rafts. In conclusion, we show that LRP and megalin both contain sorting information in their cytosolic domains that directs opposite polarity, basolateral for LRP and apical for megalin. Additionally, we show that the NPTY motif in LRP is important for basolateral sorting and the megalin transmembrane domain directs association with lipid rafts .  相似文献   
64.
The low-density lipoprotein receptor (LDLR)-related protein (LRP) is a multiligand endocytic receptor that has broad cellular and physiological functions. Previous studies have shown that both tyrosine-based and di-leucine motifs within the LRP cytoplasmic tail are responsible for mediating its rapid endocytosis. Little is known, however, about the mechanism by which LRP is targeted for degradation. By examining both endogenous full-length and a minireceptor form of LRP, we found that proteasomal inhibitors, MG132 and lactacystin, prolong the cellular half-life of LRP. The presence of proteasomal inhibitors also significantly increased the level of LRP at the cell surface, suggesting that the delivery of LRP to the degradation pathway was blocked at a compartment from which recycling of the receptor to the cell surface still occurred. Immunoelectron microscopy analyses demonstrated a proteasomal inhibitor-dependent reduction in LRP minireceptor within both limiting membrane and internal vesicles of the multivesicular bodies, which are compartments that lead to receptor degradation. In contrast to the growth hormone receptor, we found that the initial endocytosis of LRP minireceptor does not require a functional ubiquitin-proteasome system. Finally, using truncated cytoplasmic mutants of LRP minireceptors, we found that a region of 19 amino acids within the LRP tail is required for proteasomal regulation. Taken together our results provide strong evidence that the cellular turnover of a cargo receptor, i.e., LRP, is regulated by the proteasomal system, suggesting a broader function of the proteasome in regulating the trafficking of receptors into the degradation pathway.  相似文献   
65.
The low density lipoprotein receptor-related protein (LRP) is a approximately 600-kDa multifunctional endocytic receptor that is highly expressed in the brain. LRP and its ligands apolipoprotein E, alpha2-macroglobulin, and beta-amyloid precursor protein (APP), are genetically linked to Alzheimer disease and are found in characteristic plaque deposits in brains of patients with Alzheimer disease. To identify which extracellular domains of LRP interact with APP, we used minireceptors of each of the individual LRP ligand binding domains and assessed their ability to bind and degrade a soluble APP fragment. LRP minireceptors containing ligand binding domains II and IV, but not I or III, interacted with APP. To test whether APP trafficking is directly related to the rapid endocytosis of LRP, we generated stable Chinese hamster ovary cell lines expressing either a wild-type LRP minireceptor or its endocytosis mutants. Chinese hamster ovary cells stably expressing wild-type LRP minireceptor had less cell surface APP than pcDNA3 vector-transfected cells, whereas those stably expressing endocytosis-defective LRP minireceptors accumulated APP at the cell surface. We also found that the steady-state levels of the amyloid beta-peptides (Abeta) is dictated by the relative expression levels of APP and LRP, probably reflecting the dual roles of LRP in both Abeta production and clearance. Together, these data establish a relationship between LRP rapid endocytosis and APP trafficking and proteolytic processing to generate Abeta.  相似文献   
66.
The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family that shares high homology with the LDL receptor-related protein (LRP). LRP1B was originally described as a putative tumor suppressor in lung cancer cells; however, its expression profile in several regions of adult human brain suggests it may have additional functions in the central nervous system. Since LRP1B has overlapping ligand binding properties with LRP, we investigated whether LRP1B, like LRP, could interact with the beta-amyloid precursor protein (APP) and modulate its processing to amyloid-beta peptides (Abetas). Using an LRP1B minireceptor (mLRP1B4) generated to study the trafficking of LRP1B, we found that mLRP1B4 and APP form an immunoprecipitable complex. Furthermore mLRP1B4 bound and facilitated the degradation of a soluble isoform of APP containing a Kunitz proteinase inhibitor domain but not soluble APP lacking a Kunitz proteinase inhibitor domain. A functional consequence of mLRP1B4 expression was a significant accumulation of APP at the cell surface, which is likely related to the slow endocytosis rate of LRP1B. More importantly, mLRP1B4-expressing cells that accumulated cell surface APP produced less Abeta and secreted more soluble APP. These findings reveal that LRP1B is a novel binding partner of APP that functions to decrease APP processing to Abeta. Consequently LRP1B expression could function to protect against the pathogenesis of Alzheimer's disease.  相似文献   
67.
68.
本文用对流电泳技术进行成人腹泻轮状病毒(ADRV)血清流行病学调查,发现我国大陆、香港及澳大利亚正常人群中,抗ADRV抗体阳性率都在20%以下,而发生过腹泻流行的地区,阳性率高达40%以上。在动物中,抗体反应谱广泛(猪、鸡、鸭、家鼠、大鼠、豚鼠、小鼠)。以猪(36.13%)和家鼠(46.66%)为最高,讨论了成人腹泻轮状病毒动物来源的可能性。  相似文献   
69.
以闽江河口鳝鱼滩湿地互花米草(Spartina alterniflora)的实测冠层高光谱反射率和叶片光合色素含量(LPPC)为数据源,在分析LPPC与原始光谱反射率、一阶导数光谱反射率、22种已报道光谱指数和14种新构建的植被指数相关性的基础上,利用直线回归、指数回归、对数回归以及乘幂回归方法,系统地比较了36种植被指数在估算互花米草LPPC中的表现。研究表明:(1)一阶导数光谱反射率组合的植被指数用于估算互花米草的LPPC优于原始光谱反射率;(2)红边区域一阶导数光谱是估测互花米草LPPC的最佳波段;(3)对于单一色素含量的估算,叶绿素a(Chla)的最佳估算指数为FDNDVI[723,703];叶绿素b(Chlb)的最佳估算指数为FDRVI[723,525];类胡萝卜素(Cars)的最佳估算指数为FDNDVI[723,703];(4)对于使用统一参量同时估算Chla、Chlb、Cars,由FDRVI[723,703]建立的对数估算模型效果最佳。研究成果可为湿地植物生化参量反演提供参考,也可为闽江河口湿地入侵种互花米草的动态监测和生态评估管理提供有力的科学依据。  相似文献   
70.
Human serum albumin (HSA) is an essential protein for maintaining human health. Accurate detection and quantification of HSA are of great significance for disease diagnosis and biochemical research. Here, a new HSA fluorescent probe BNPE based on the 1,8-naphthalimide fluorophore was designed and synthesized. The probe could recognize HSA through a twisted intramolecular charge transfer mechanism, effectively avoid the interference of most substances, and realize HSA fluorescence imaging in living cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号