首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11463篇
  免费   1077篇
  国内免费   1711篇
  14251篇
  2024年   46篇
  2023年   202篇
  2022年   477篇
  2021年   696篇
  2020年   515篇
  2019年   565篇
  2018年   564篇
  2017年   423篇
  2016年   540篇
  2015年   861篇
  2014年   914篇
  2013年   990篇
  2012年   1183篇
  2011年   1051篇
  2010年   593篇
  2009年   590篇
  2008年   611篇
  2007年   554篇
  2006年   526篇
  2005年   427篇
  2004年   314篇
  2003年   246篇
  2002年   225篇
  2001年   128篇
  2000年   127篇
  1999年   125篇
  1998年   83篇
  1997年   71篇
  1996年   67篇
  1995年   58篇
  1994年   52篇
  1993年   38篇
  1992年   64篇
  1991年   49篇
  1990年   40篇
  1989年   31篇
  1988年   27篇
  1987年   28篇
  1986年   22篇
  1985年   23篇
  1984年   13篇
  1983年   11篇
  1982年   12篇
  1981年   6篇
  1978年   8篇
  1977年   5篇
  1973年   5篇
  1972年   4篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Yuan  Shiru  Sun  Guohuan  Zhang  Yawen  Dong  Fang  Cheng  Hui  Cheng  Tao 《中国科学:生命科学英文版》2021,64(12):2030-2044
Science China Life Sciences - Since the huge success of bone marrow transplantation technology in clinical practice, hematopoietic stem cells (HSCs) have become the gold standard for defining the...  相似文献   
992.
Jiang  Lei  Zhou  Guo-Wei  Zhang  Yu-Yang  Lei  Xin-Ming  Yuan  Tao  Guo  Ming-Lan  Yuan  Xiang-Cheng  Lian  Jian-Sheng  Liu  Sheng  Huang  Hui 《Coral reefs (Online)》2021,40(5):1563-1576
Coral Reefs - Symbiosis establishment is a milestone in the life cycles of most broadcast-spawning corals; however, it remains largely unknown how initial symbiont infection is affected by ocean...  相似文献   
993.
The degree of polymerization can cause significant changes in the blend microstructure and physical mechanism of the active layer of non-fullerene polymer solar cells, resulting in a huge difference in device performance. However, the diversity of stability issues, including photobleaching stability, storage stability, photostability, thermal stability, and mechanical stability, and more, poses a challenge for the degree of polymerization to comprehensively address the trade-off between device efficiency and stability and reasonably evaluate the application potential of polymer materials. Herein, a series of PM6 polymers with different weight-average molecular weights (Mw) and polydispersity index (PDI) are synthesized. The effects of the degree of PM6 polymerization on the efficiency and degradation behaviors of the photovoltaic systems based on Y6 as acceptor are investigated systematically. The findings regarding stability issues, together with the trade-offs in the efficiency-stability gap, formulate a complete guideline for the material design and performance evaluation in a way that relies much less on trial-and-error efforts.  相似文献   
994.
995.
Although human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein we describe a strategy that combines immunoaffinity subtraction and subsequent chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with two-dimensional LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this "divide-and-conquer" strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3,654 different proteins with 1,494 proteins identified by multiple peptides. Numerous low abundance proteins were identified, exemplified by 78 "classic" cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally a total of 2,910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1,553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients that provides a foundation for future high throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.  相似文献   
996.
Identifying Hfq-binding small RNA targets in Escherichia coli   总被引:3,自引:0,他引:3  
The Hfq-binding small RNAs (sRNAs) have recently drawn much attention as regulators of translation in Escherichia coli. We attempt to identify the targets of this class of sRNAs in genome scale and gain further insight into the complexity of translational regulation induced by Hfq-binding sRNAs. Using a new alignment algorithm, most known negatively regulated targets of Hfq-binding sRNAs were identified. The results also show several interesting aspects of the regulatory function of Hfq-binding sRNAs.  相似文献   
997.
998.
Dear Editor, Clostridium novyi(C.novyi)is a spore-forming anaerobic bacterium and opportunistic pathogen causing severe infectious diseases in humans and animal...  相似文献   
999.
Evidence suggests that short amyloid-forming peptides derived from bacterial proteomes have functional roles; however, the reported activities are diverse and the underlying mechanisms remain unclear. In this study, we simulated short amyloid-forming peptides from the amyloid-forming truncated protein C123 of Streptococcus mutans (S. mutans), studied their biological functions in microbial proliferation and biofilm formation, and further investigated the underlying mechanism. Fourteen hexapeptides were simulated, 13 of which were successfully synthesized. We found that the amyloid-forming hexapeptides (AFhPs) displayed efficient broad-spectrum antibiofilm activity against the Gram-positive bacteria S. mutans, Streptococcus sanguis and Staphylococcus aureus, Gram-negative bacteria Escherichia coli and fungus Candida albicans, by aggregating into rigid amyloid fibres agglutinating microbes, whereas the non-amyloid-forming hexapeptides (non-AFhPs) did not. The AFhPs did not kill microbes and showed little or no cytotoxicity. Furthermore, a set of AFhPs displayed broad-spectrum antibiofilm activity, regardless of its source. The microbial cell wall carbohydrates, peptidoglycan (PGN), lipoteichoic acid (LTA), glucan and zymosan A, mediated AFhP binding and triggered significant AFhP fibrillation. Although amyloid fibres agglutinated lipid membrane model – large unilamellar vesicles (LUVs) – and LUVs facilitated AFhP fibrillation, the roles of lipid membranes in AFhP antibiofilm activities remain to be elucidated. We highlight the potential use of AFhPs as novel antibiofilm agents.  相似文献   
1000.
Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号