首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3740篇
  免费   364篇
  国内免费   271篇
  2024年   4篇
  2023年   32篇
  2022年   92篇
  2021年   163篇
  2020年   132篇
  2019年   147篇
  2018年   151篇
  2017年   111篇
  2016年   150篇
  2015年   233篇
  2014年   275篇
  2013年   263篇
  2012年   373篇
  2011年   295篇
  2010年   198篇
  2009年   152篇
  2008年   178篇
  2007年   195篇
  2006年   156篇
  2005年   143篇
  2004年   125篇
  2003年   128篇
  2002年   135篇
  2001年   98篇
  2000年   87篇
  1999年   75篇
  1998年   37篇
  1997年   35篇
  1996年   27篇
  1995年   24篇
  1994年   24篇
  1993年   18篇
  1992年   22篇
  1991年   25篇
  1990年   15篇
  1989年   10篇
  1988年   9篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1971年   2篇
  1969年   1篇
  1956年   1篇
  1952年   2篇
排序方式: 共有4375条查询结果,搜索用时 62 毫秒
81.
miRNAs have recently been shown to play a significant role in human aging. However, data demonstrating the effects of aging‐related miRNAs in human mesenchymal stem cells (hMSCs) are limited. We observed that hMSC differentiation decreased with aging. We also identified that miR‐10a expression was significantly decreased with age by comparing the miRNA expression of hMSCs derived from young and aged individuals. Therefore, we hypothesized that the downregulation of miR‐10a may be associated with the decreased differentiation capability of hMSCs from aged individuals. Lentiviral constructs were used to up‐ or downregulate miR‐10a in young and old hMSCs. Upregulation of miR‐10a resulted in increased differentiation to adipogenic, osteogenic, and chondrogenic lineages and in reduced cell senescence. Conversely, downregulation of miR‐10a resulted in decreased cell differentiation and increased cell senescence. A chimeric luciferase reporter system was generated, tagged with the full‐length 3′‐UTR region of KLF4 harboring the seed‐matched sequence with or without four nucleotide mutations. These constructs were cotransfected with the miR‐10a mimic into cells. The luciferase activity was significantly repressed by the miR‐10a mimic, proving the direct binding of miR‐10a to the 3′‐UTR of KLF4. Direct suppression of KLF4 in aged hMSCs increased cell differentiation and decreased cell senescence. In conclusion, miR‐10a restores the differentiation capability of aged hMSCs through repression of KLF4. Aging‐related miRNAs may have broad applications in the restoration of cell dysfunction caused by aging. J. Cell. Physiol. 228: 2324–2336, 2013. © The Authors. Published by Wiley Periodicals, Inc.  相似文献   
82.
Changes in the critical swimming speed (Ucrit, cm s?1) with ontogeny of 2·5–12·5 month‐old juvenile anadromous Chinese sturgeon Acipenser sinesis were measured in a modified Blazka‐type swimming tunnel. The absolute Ucrit increased with length, mass and age; the relative Ucrit (body lengths, s?1), however, decreased. Juvenile A. sinesis did not display a parr–smolt transformation at the length or age threshold to tolerate full‐strength seawater.  相似文献   
83.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   
84.
85.
86.
High acetate accumulation was produced during glucose fermentation in high cell density cultures, which is harmful to cell growth. In order to reduce the negative impact of acetate accumulation on the fermentation products, we introduced the Escherichia coli acetyl-CoA synthetase (ACS) gene into the marine microalga Schizochytrium sp. TIO1101, generating genetically modified ACS transformants. The results of PCR and blotting analyses showed that the exogenous ACS gene was incorporated into the genome and successfully expressed. The engineered Schizochytrium increased the pH value and reduced the acetate concentration in the final fermentation medium significantly. Furthermore, the ACS transformants exhibited faster growth and glucose consumption rates than the wild-type strain. The biomass and fatty acid proportion of ACS transformants increased by 29.9 and 11.3 %, respectively. Taken together, the data suggest that ACS overexpression in Schizochytrium might improve the utilization of carbon resource and decrease the production of acetate byproduct. These results demonstrate that application of ACS in metabolic genetic engineering could improve the properties of Schizochytrium significantly.  相似文献   
87.
Sex steroid changes during temperature‐induced gonadal differentiation were evaluated in the olive flounder, Paralichthys olivaceus. Larvae were reared at 21 ± 0.5°C, 24 ± 0.5°C and 28 ± 0.5°C from day 40 post‐hatching (dph) to 90 dph. The proportion of males was 61.1, 76.7, 87.8 and 47.8% in 21°C, 24°C, 28°C and in control groups, respectively. Gonadal differentiation was circa 65 dph, when fishes were a mean 39 mm total length (TL). The gonads developed faster when fishes were reared in higher temperatures. Radioimmunoassay (RIA) analyses indicated that the level of estradiol‐17β (E2) changed during the period of gonadal differentiation and peaked at an onset of ovarian differentiation in all groups. Compared with fish in control groups, the levels of E2 were lower in thermal‐treated groups, especially in the highest temperature groups. The present results indicate that E2 plays a major role in the process of ovarian differentiation, and suggest that temperature‐induced masculinization in P. olivaceus is mainly due to a decrease in the E2 level during the period of ovarian differentiation.  相似文献   
88.
As increasing drug-resistance poses an emerging threat to public health, the development of novel antibacterial agents is critical. We developed a workflow consisting of various methods for de novo design. In the workflow, 2D-QSAR model based on molecular fingerprints was constructed to extract the bioactive molecular fingerprints from a data set of DNA–gyrase inhibitors with new structure and mechanism. These fingerprints were converted into molecular fragments which were recombined to generate compound library. The new compound library was virtually screened by LigandFit and Gold docking, and the results were further investigated by pharmacophore validation and binding mode analysis. The workflow successfully achieved a potential DNA–gyrase inhibitor. It could be applied to design more novel potential DNA–gyrase inhibitors and provide theoretical basis for further optimization of the hit compounds.  相似文献   
89.
A novel series of amide derivatives of lomefloxacin were synthesized and evaluated for their topoisomerase I and II inhibitory activity as well as cytotoxicity against a panel of five human cancer cell lines. Of the compounds prepared compounds 9d and 9g exhibited strong inhibition against topoisomerase II at 100 μM. In addition, docking studies were performed to predict the inhibition mode.  相似文献   
90.
Atrial fibrillation (AF) is one of the common arrhythmias that threaten human health. Kv1.5 potassium channel is reported as an efficacious and safe target for the treatment of AF. In this paper, we designed and synthesized three series of compounds through modifying the lead compound RH01617 that was screened out by the pharmacophore model we reported earlier. All of the compounds were evaluated by the whole-patch lamp technology and most of them possessed potent inhibitory activities against Kv1.5. Compounds IIIi and IIIl were evaluated for the target selectivity as well as the pharmacodynamic effects in an isolated rat model. Due to the promising pharmacological behavior, compound IIIl deserves further pharmacodynamic and pharmacokinetic evaluations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号