首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1121篇
  免费   97篇
  国内免费   93篇
  1311篇
  2024年   1篇
  2023年   18篇
  2022年   26篇
  2021年   52篇
  2020年   35篇
  2019年   39篇
  2018年   37篇
  2017年   32篇
  2016年   44篇
  2015年   63篇
  2014年   57篇
  2013年   72篇
  2012年   91篇
  2011年   86篇
  2010年   34篇
  2009年   56篇
  2008年   56篇
  2007年   40篇
  2006年   54篇
  2005年   33篇
  2004年   22篇
  2003年   26篇
  2002年   34篇
  2001年   26篇
  2000年   29篇
  1999年   15篇
  1998年   16篇
  1997年   38篇
  1996年   31篇
  1995年   21篇
  1994年   15篇
  1993年   21篇
  1992年   18篇
  1991年   8篇
  1990年   3篇
  1989年   10篇
  1988年   5篇
  1987年   6篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1966年   1篇
  1965年   1篇
  1946年   2篇
排序方式: 共有1311条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
55.
The global connectivities in very large protein similarity networks contain traces of evolution among the proteins for detecting protein remote evolutionary relations or structural similarities. To investigate how well a protein network captures the evolutionary information, a key limitation is the intensive computation of pairwise sequence similarities needed to construct very large protein networks. In this article, we introduce label propagation on low-rank kernel approximation (LP-LOKA) for searching massively large protein networks. LP-LOKA propagates initial protein similarities in a low-rank graph by Nyström approximation without computing all pairwise similarities. With scalable parallel implementations based on distributed-memory using message-passing interface and Apache-Hadoop/Spark on cloud, LP-LOKA can search protein networks with one million proteins or more. In the experiments on Swiss-Prot/ADDA/CASP data, LP-LOKA significantly improved protein ranking over the widely used HMM-HMM or profile-sequence alignment methods utilizing large protein networks. It was observed that the larger the protein similarity network, the better the performance, especially on relatively small protein superfamilies and folds. The results suggest that computing massively large protein network is necessary to meet the growing need of annotating proteins from newly sequenced species and LP-LOKA is both scalable and accurate for searching massively large protein networks.  相似文献   
56.
BackgroundTaller adult height is associated with lower risks of ischemic heart disease in mendelian randomization (MR) studies, but little is known about the causal relevance of height for different subtypes of ischemic stroke. The present study examined the causal relevance of height for different subtypes of ischemic stroke.Methods and findingsHeight-associated genetic variants (up to 2,337) from previous genome-wide association studies (GWASs) were used to construct genetic instruments in different ancestral populations. Two-sample MR approaches were used to examine the associations of genetically determined height with ischemic stroke and its subtypes (cardioembolic stroke, large-artery stroke, and small-vessel stroke) in multiple ancestries (the MEGASTROKE consortium, which included genome-wide studies of stroke and stroke subtypes: 60,341 ischemic stroke cases) supported by additional cases in individuals of white British ancestry (UK Biobank [UKB]: 4,055 cases) and Chinese ancestry (China Kadoorie Biobank [CKB]: 10,297 cases). The associations of genetically determined height with established cardiovascular and other risk factors were examined in 336,750 participants from UKB and 58,277 participants from CKB. In MEGASTROKE, genetically determined height was associated with a 4% lower risk (odds ratio [OR] 0.96; 95% confidence interval [CI] 0.94, 0.99; p = 0.007) of ischemic stroke per 1 standard deviation (SD) taller height, but this masked a much stronger positive association of height with cardioembolic stroke (13% higher risk, OR 1.13 [95% CI 1.07, 1.19], p < 0.001) and stronger inverse associations with large-artery stroke (11% lower risk, OR 0.89 [0.84, 0.95], p < 0.001) and small-vessel stroke (13% lower risk, OR 0.87 [0.83, 0.92], p < 0.001). The findings in both UKB and CKB were directionally concordant with those observed in MEGASTROKE, but did not reach statistical significance: For presumed cardioembolic stroke, the ORs were 1.08 (95% CI 0.86, 1.35; p = 0.53) in UKB and 1.20 (0.77, 1.85; p = 0.43) in CKB; for other subtypes of ischemic stroke in UKB, the OR was 0.97 (95% CI 0.90, 1.05; p = 0.49); and for other nonlacunar stroke and lacunar stroke in CKB, the ORs were 0.89 (0.80, 1.00; p = 0.06) and 0.99 (0.88, 1.12; p = 0.85), respectively. In addition, genetically determined height was also positively associated with atrial fibrillation (available only in UKB), and with lean body mass and lung function, and inversely associated with low-density lipoprotein (LDL) cholesterol in both British and Chinese ancestries. Limitations of this study include potential bias from assortative mating or pleiotropic effects of genetic variants and incomplete generalizability of genetic instruments to different populations.ConclusionsThe findings provide support for a causal association of taller adult height with higher risk of cardioembolic stroke and lower risk of other ischemic stroke subtypes in diverse ancestries. Further research is needed to understand the shared biological and physical pathways underlying the associations between height and stroke risks, which could identify potential targets for treatments to prevent stroke.

In a Mendelian randomization study, Andrew B. Linden and colleagues study the relationship between height and risk of stroke subtypes among individuals from the MEGASTROKE consortium, China Kadoorie Biobank, and UK Biobank.  相似文献   
57.
58.
Kuang GH  Liu YH  Ren W 《生理学报》2012,64(3):275-281
The stomatogastric ganglion (STG) of shellfish includes 30 neurons and produces pyloric rhythms. It is the common model to study central pattern generator (CPG). Regulation of pyloric rhythms not only is related to the property of single neurons in STG but also depends on the connections and property of the whole neuronal network. It has been found that transient potassium current (I(A)) and hyperpolarization-activated cation current (I(h)) exist in certain types of neurons of STG. However, roles played by these two currents in maintaining and regulating the pyloric rhythms are unknown. In the present study, in vitro electrophysiological recordings were performed on crayfish STG to examine the role played by I(A) and I(h) in regulation of pyloric rhythm. 4AP (2 mmol/L), a specific inhibitor of I(A), caused a decrease in pyloric cycle (P < 0.01), an increase in PD (pyloric dilator) ratio, a decrease in PY (pyloric) ratio (P < 0.01) and delay of phases of LP and PY firing. ZD7288 (100 μmol/L), a specific inhibitor of I(h), caused a decrease in pyloric cycle (P < 0.01), an increase in PD ratio (P < 0.01), an increase in LP (lateral pyloric) ratio (P < 0.01), a decrease in PY ratio (P < 0.01) and delay of phases of LP and PY firing. These results indicate that I(A) and I(h) play important roles in regulating pyloric rhythms in crayfish STG.  相似文献   
59.
Humans and other species continually perform microscopic eye movements, even when attending to a single point. These movements, which include drifts and microsaccades, are under oculomotor control, elicit strong neural responses, and have been thought to serve important functions. The influence of these fixational eye movements on the acquisition and neural processing of visual information remains unclear. Here, we show that during viewing of natural scenes, microscopic eye movements carry out a crucial information-processing step: they remove predictable correlations in natural scenes by equalizing the spatial power of the retinal image within the frequency range of ganglion cells' peak sensitivity. This transformation, which had been attributed to center-surround receptive field organization, occurs prior to any neural processing and reveals a form of matching between the statistics of natural images and those of normal eye movements. We further show that the combined effect of microscopic eye movements and retinal receptive field organization is to convert spatial luminance discontinuities into synchronous firing events, beginning the process of edge detection. Thus, microscopic eye movements are fundamental to two goals of early visual processing: redundancy reduction and feature extraction.  相似文献   
60.
Exenatide (exendin-4 analogue) is widely used in clinics and shows a neuroprotective effect. The main objectives of the present study were to prove that retinal ganglion cells (RGC-5) express GLP-1R, to ascertain whether exenatide prevents a high-glucose-induced RGC-5 impairment, to determine the appropriate concentration of exenatide to protect RGC-5 cells, and to explore the neuroprotective mechanisms of exenatide. Immunofluorescence and Western blot analyses demonstrated that RGC-5 cells express GLP-1R. We incubated RGC-5 cells with 25 mM glucose prior to incubation with either 25 mM glucose, 55 mM glucose (high), high glucose plus exenatide or high glucose plus a GLP-1R antagonist. The survival rates of the cells were measured by CCK-8, and cellular injury was detected by electron microscopy. There were statistical differences between the high-glucose group and the control group (P<0.05). Exenatide improved the survival rate of the cells and suppressed changes in the mitochondrial morphology. The optimum concentration of exenatide to protect the RGC-5 cells from high-glucose-induced RGC injury was 0.5 μg/ml, and this protective effect could be inhibited by exendin (9-39). To further study the mechanism underlying the beneficial effects of exenatide, the expression levels of cytochrome c, Bcl-2, Bax and caspase-3 were analysed by Western blot. The present study showed that treatment with exenatide significantly inhibited cytochrome c release and decreased the intracellular expression levels of Bax and caspase-3, whereas Bcl-2 was increased (P<0.05). These results suggested that GLP-1R activation can inhibit the cellular damage that is induced by high glucose. A mitochondrial mechanism might play a key role in the protective effect of exenatide on the RGC-5 cells, and exenatide might be beneficial for patients with diabetic retinopathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号