首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8083篇
  免费   720篇
  国内免费   611篇
  9414篇
  2024年   20篇
  2023年   118篇
  2022年   282篇
  2021年   450篇
  2020年   301篇
  2019年   354篇
  2018年   326篇
  2017年   238篇
  2016年   389篇
  2015年   521篇
  2014年   659篇
  2013年   600篇
  2012年   732篇
  2011年   621篇
  2010年   437篇
  2009年   349篇
  2008年   437篇
  2007年   412篇
  2006年   302篇
  2005年   262篇
  2004年   207篇
  2003年   188篇
  2002年   138篇
  2001年   142篇
  2000年   131篇
  1999年   149篇
  1998年   89篇
  1997年   81篇
  1996年   73篇
  1995年   49篇
  1994年   57篇
  1993年   31篇
  1992年   50篇
  1991年   39篇
  1990年   23篇
  1989年   31篇
  1988年   22篇
  1987年   29篇
  1986年   13篇
  1985年   21篇
  1984年   14篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
排序方式: 共有9414条查询结果,搜索用时 0 毫秒
991.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a recently identified human coronavirus. The extremely high homology of the viral genomic sequences between the viruses isolated from human (huSARS-CoV) and those of palm civet origin (pcSARS-CoV) suggested possible palm civet-to-human transmission. Genetic analysis revealed that the spike (S) protein of pcSARS-CoV and huSARS-CoV was subjected to the strongest positive selection pressure during transmission, and there were six amino acid residues within the receptor-binding domain of the S protein being potentially important for SARS progression and tropism. Using the single-round infection assay, we found that a two-amino acid substitution (N479K/T487S) of a huSARS-CoV for those of pcSARS-CoV almost abolished its infection of human cells expressing the SARS-CoV receptor ACE2 but no effect upon the infection of mouse ACE2 cells. Although single substitution of these two residues had no effects on the infectivity of huSARS-CoV, these recombinant S proteins bound to human ACE2 with different levels of reduced affinity, and the two-amino acid-substituted S protein showed extremely low affinity. On the contrary, substitution of these two amino acid residues of pcSARS-CoV for those of huSRAS-CoV made pcSARS-CoV capable of infecting human ACE2-expressing cells. These results suggest that amino acid residues at position 479 and 487 of the S protein are important determinants for SARS-CoV tropism and animal-to-human transmission.  相似文献   
992.
Modulation of DNA end joining by nuclear proteins   总被引:6,自引:0,他引:6  
DNA double strand breaks in mammalian cells are primarily repaired by homologous recombination and non-homologous end joining (NHEJ). NHEJ may either be error-free or mutagenic with deletions or insertions at the joint. Recent studies showed that DNA ends can also be joined via microhomologous sequences flanking the break point especially when proteins responsible for NHEJ, such as Ku, are absent. Microhomology-mediated end joining (MHEJ) is always accompanied by a deletion that spans one of the two homologous sequences and the intervening sequence, if any. In this study we evaluated several factors affecting the relative contribution of MHEJ to DNA end joining using nuclear extracts and DNA substrates containing 10-bp repeats at the ends. We found that the occurrence of MHEJ is determined by the relative abundance of nuclear proteins. At low DNA/protein ratios, an error-free end-joining mechanism predominated over MHEJ. As the DNA/protein ratio increased, MHEJ became predominant. We show that the nuclear proteins that contribute to the inhibition of the error-prone MHEJ include Ku and histone H1. Treatment of extracts with flap endonuclease 1 antiserum significantly reduced MHEJ. Addition of a 17-bp intervening sequence between the microhomologous sequences significantly reduced the efficiency of MHEJ. Thus, this cell-free assay provides a platform for evaluating factors modulating end joining.  相似文献   
993.
Li N  Deng C  Yin X  Yao N  Shen X  Zhang X 《Analytical biochemistry》2005,342(2):318-326
In this work, we developed a new approach to the analysis of the lung cancer biomarkers, hexanal and heptanal in human blood that was based on headspace single-drop microextraction (HS-SDME) with droplet derivatization, followed by gas chromatography-mass spectrometry (GC-MS). Aldehydes in blood were headspace extracted, concentrated, and derivatized by a suspended microdrop solvent containing the derivatization agent O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride. The aldehyde oximes formed in the microdrop solvent were analyzed by GC-MS. The optimal HS-SDME with droplet derivatization parameters extraction solvent of decane, sample temperature of 40 degrees C, extraction time of 6 min, stirring rate of 1100 rpm, and solvent volume of 2.0 microL were obtained and used for analysis of hexanal and heptanal in blood. The method reproducibility, linearity, recovery, and detection limit were studied and the obtained results demonstrated the method feasibility. Finally, the proposed method was applied to the quantification of hexanal and heptanal in cancer blood and normal blood. Due to sample extraction, concentration, and derivatization being performed in a single step, the method provided a simple, rapid, low-cost, and efficient approach to analysis of aldehydes in blood samples.  相似文献   
994.
Stem cells isolated from various sources have been shown to vary in their differentiation capacity or pluripotentiality. Two groups of stem cells, embryonic and adult stem cells, may be capable of differentiating into any desired tissue or cell type, which offers hope for the development of therapeutic applications for a large number of disorders. However, major limitations with the use of embryonic stem cells for human disease have led researchers to focus on adult stem cells as therapeutic agents. Investigators have begun to examine postnatal sources of pluripotent stem cells, such as bone marrow stroma or adipose tissue, as sources of mesenchymal stem cells. The following review focuses on recent research on the use of stem cells for the treatment of cardiovascular and pulmonary diseases and the future application of mesenchymal stem cells for the treatment of a variety of cardiovascular disorders.  相似文献   
995.
A novel lectin (AMML) was isolated from a Chinese herb, i.e., the roots of Astragalus mongholicus, using a combination of ammonium sulfate fraction and ion exchange chromatographies. The molecular mass of intact AMML was determined to be 66,396 Da by MALDI-TOF mass spectrometry and 61.8 kDa by gel filtration, respectively. AMML was a dimeric protein composed of two identical subunits each with a molecular mass of 29.6 kDa. The lectin was a glycoprotein with a neutral carbohydrate content of 19.6%. The purified lectin hemagglutinated both rabbit and human erythrocytes, and showed preference for blood types O (native) and AB (trypsin-treated). Among various carbohydrates tested, the lectin was best inhibited by D-galactose and its derivatives with pronounced preference for lactose (3.13 mM). N-terminal amino acid sequence of AMML was determined as ESGINLQGDATLANN. The optimal pH range for lectin activity was between pH 4.5 and 7.5, and the lectin was active up to 65 degrees C. It also exerted antifungal activity against Botrytis cincerea, Fusarium oxysporum, Colletorichum sp., and Drechslera turcia but not against Rhizoctonia solani and Mycosphaerella arachidicola.  相似文献   
996.
Mycobacterium tuberculosis is a major global pathogen whose threat has increased with the emergence of multidrug-resistant strains. The cell wall of M. tuberculosis is thick, rigid, and hydrophobic, which serves to protect the organism from the environment and makes it highly impermeable to conventional antimicrobial agents. There is little known about cell wall autolysins (also referred to as peptidoglycan hydrolases) of mycobacteria. We identified an open reading frame (Rv3915) in the M. tuberculosis genome designated cwlM that appeared consistent with a peptidoglycan hydrolase. The 1218-bp gene was amplified by PCR, cloned and expressed in E. coli strain HMS174(DE-3), and its gene product, a 47-kDa recombinant protein, was purified and partially characterized. Purified CwlM was able to lyse whole mycobacteria, release peptidoglycan from the cell wall of Micrococcus luteus and Mycobacterium smegmatis, and cleave N-acetylmuramoyl-L-alanyl-D-isoglutamine, releasing free N-acetylmuramic acid. These results indicate that CwlM is a novel autolysin and identify cwlM as the first, to our knowledge, autolysin gene identified and cloned from M. tuberculosis. CwlM offers a new target for a unique class of drugs that could alter the permeability of the mycobacterial cell wall and enhance the effectiveness of treatments for tuberculosis.  相似文献   
997.
In the present study, we tested the effects of long-term estrogen replacement treatment on myocardial ischemia-reperfusion injury and on the cardioprotection of ischemic preconditioning in isolated hearts from ovariectomized rats. Ovariectomized rats were treated with 17beta-estradiol (30 micro g/kg/d, s.c.) for 12 weeks. Isolated rat hearts were perfused in the Langendorff mode. Heart rate, coronary flow, left ventricular pressure and its first derivative (+/-LVdp/dtmax) were recorded. Fifteen-min global ischemia and 30-min reperfusion caused a significant decrease of cardiac mechanical function, which were not affected by ovariectomy or estrogen replacement treatment. The isolated hearts in all groups could be preconditioned, and the cardioprotection afforded by preconditioning in the sham-operated rats was greater compared with ovariectomized rats with or without estrogen treatment. These results suggest that long-term estrogen replacement treatment exerts no effect on the inhibition of mechanical function after ischemia-reperfusion, and this study also suggests that estrogen does not affect ischemic preconditioning in isolated hearts of ovariectomized rats.  相似文献   
998.
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen contained in cigarette smoke. NNK significantly contributes to smoking-related lung cancer, but the molecular mechanism remains enigmatic. Bcl2 and c-Myc are two major oncogenic proteins that cooperatively promote tumor development. We report here that NNK simultaneously stimulates Bcl2 phosphorylation exclusively at Ser(70) and c-Myc at Thr(58) and Ser(62) through activation of both ERK1/2 and PKCalpha, which is required for NNK-induced survival and proliferation of human lung cancer cells. Treatment of cells with staurosporine or PD98059 blocks both Bcl2 and c-Myc phosphorylation and results in suppression of NNK-induced proliferation. Specific depletion of c-Myc expression by RNA interference retards G(1)/S cell cycle transition and blocks NNK-induced cell proliferation. Phosphorylation of Bcl2 at Ser(70) promotes a direct interaction between Bcl2 and c-Myc in the nucleus and on the outer mitochondrial membrane that significantly enhances the half-life of the c-Myc protein. Thus, NNK-induced functional cooperation of Bcl2 and c-Myc in promoting cell survival and proliferation may occur in a novel mechanism involving their phosphorylation, which may lead to development of human lung cancer and/or chemoresistance.  相似文献   
999.
Elevated levels of the cyclin-dependent kinase (CDK) inhibitor p27 block the cell in G(0)/G(1) until mitogenic signals activate G(1) cyclins and initiate proliferation. Post-translational regulation of p27 by different phosphorylation events is critical in allowing cells to proceed through the cell cycle. We now demonstrate that the arginine-directed kinase, Mirk/dyrk1B, is maximally active in G(0) in NIH3T3 cells, when it stabilizes p27 by phosphorylating it at Ser-10. The phospho-mimetic mutant p27-S10D was more stable, and the non-phosphorylatable mutant p27-S10A was less stable than wild-type when expressed in G(0)-arrested cells. Following phosphorylation by Mirk, p27 remains a functional CDK inhibitor, capable of binding to CDK2. Mirk did not induce the translocation of p27 from the nucleus in G(0), but instead co-localized with nuclear p27. Depletion of Mirk by RNA interference decreased the phosphorylation of p27 at Ser-10 and the stability of endogenous p27. RNA(i) to Mirk increased cell entry from G(0) into G(1) as shown by increased expression of proliferating cell nuclear antigen and decreased expression of p27. These data suggest a model in which Mirk increases the amount of nuclear p27 by stabilizing it during G(0) when Mirk is most abundant. Mitogen stimulation then causes cells to enter G(1), reduces Mirk levels (Deng, X., Ewton, D., Pawlikowski, B., Maimone, M., and Friedman, E. (2003) J. Biol. Chem. 278, 41347-41354), and initiates the translocation of p27 to the cytoplasm. In addition, depletion of Mirk by RNA(i) in postmitotic C2C12 myoblasts decreased protein but not mRNA levels of p27, suggesting that stabilization of p27 by Mirk also occurs during differentiation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号