首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
  国内免费   25篇
  2024年   1篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   9篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
排序方式: 共有108条查询结果,搜索用时 46 毫秒
81.
The immunostimulatory effects of orally administered Panax ginseng root or its polysaccharides (GSP) in white shrimp, Litopenaeus vannamei, were investigated in this study. Shrimp were fed a diet containing 0.4 g kg?1 GSP over a period of 84 days, during which the activities of total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), acid phosphatase (ACP), and alkaline phosphatase (AKP), as well as malondialdehyde (MDA) content, and expressions of cytosolic superoxide dismutase (cyt-SOD), CAT, GSH-Px, and peroxiredoxin (Prx) genes were determined in various tissues of the shrimp. Results showed that the shrimp fed the GSP diet had significantly increased ACP and AKP activities in the gills. The GSP-fed shrimp also displayed significantly increased T-SOD and GSH-Px activities in the gills and hepatopancreas of the shrimp; meanwhile there was enhanced CAT activity in the gills, but decreased MDA content in the gills, hepatopancreas and muscle. The mRNA expressions of cyt-SOD, CAT, GSH-Px and Prx were significantly elevated in the gills and hepatopancreas of the shrimp fed the GSP diet for 84 days, compared with that of the control. Therefore, GSP can be used as an immunostimulant for shrimp through dietary administration to increase immune enzyme activity and modify expression of immune genes in shrimp.  相似文献   
82.
若羌县、且末县地处塔克拉玛干沙漠南缘,是新疆干旱半干旱生态区的典型代表,境内生态类型多样,气候干旱少雨、土壤次生盐渍化重,至今仍存在有一定规模的传统农业耕作模式,保留着丰富多样的抗逆农作物种质资源。本研究在农作物种质资源普查基础上,分析了两县的社会经济发展、农业生产及种植结构调整的演变规律;调查收集抗逆种质资源121份,隶属11科28属34种,分析评价了部分作物种质资源的抗逆性,以及与当地的生态条件、农业生产模式和百姓生活习惯的内在联系,探讨了主要农作物品种演替的阶段性变化,讨论了新疆干旱区抗逆农作物种质资源的收集、保护和利用问题。  相似文献   
83.
Enhancing nitrogen use efficiency (NUE) in crop plants is an important breeding target to reduce excessive use of chemical fertilizers, with substantial benefits to farmers and the environment. In Arabidopsis (Arabidopsis thaliana), allocation of more NO3 to shoots was associated with higher NUE; however, the commonality of this process across plant species have not been sufficiently studied. Two Brassica napus genotypes were identified with high and low NUE. We found that activities of V-ATPase and V-PPase, the two tonoplast proton-pumps, were significantly lower in roots of the high-NUE genotype (Xiangyou15) than in the low-NUE genotype (814); and consequently, less vacuolar NO3 was retained in roots of Xiangyou15. Moreover, NO3 concentration in xylem sap, [15N] shoot:root (S:R) and [NO3] S:R ratios were significantly higher in Xiangyou15. BnNRT1.5 expression was higher in roots of Xiangyou15 compared with 814, while BnNRT1.8 expression was lower. In both B. napus treated with proton pump inhibitors or Arabidopsis mutants impaired in proton pump activity, vacuolar sequestration capacity (VSC) of NO3 in roots substantially decreased. Expression of NRT1.5 was up-regulated, but NRT1.8 was down-regulated, driving greater NO3 long-distance transport from roots to shoots. NUE in Arabidopsis mutants impaired in proton pumps was also significantly higher than in the wild type col-0. Taken together, these data suggest that decrease in VSC of NO3 in roots will enhance transport to shoot and essentially contribute to higher NUE by promoting NO3 allocation to aerial parts, likely through coordinated regulation of NRT1.5 and NRT1.8.China is the largest consumer of nitrogen (N) fertilizer in the world; however, the average N use efficiency (NUE) in fertilizer is only around 35%, suggesting considerable potential for improvements (Shen et al., 2003; Wang et al., 2014). With the high amounts of N-fertilizer being used, crop yields are declining in some areas, where application is exceeding the optimum required for local field crops (Shen et al., 2003; Miller and Smith, 2008; Xu et al., 2012). The extremely low NUE results in waste of resources and environmental contamination, and also presents serious hazards for human health (Xu et al., 2012; Chen et al., 2014). Consequently, exploiting the maximum potential for improving NUE in crop plants will have practical significance for agriculture production and the environment (Zhang et al., 2010; Schroeder et al., 2013; Wang et al., 2014). Elucidating the genetic and physiological regulatory mechanisms governing NUE in plants will allow breeding crops and varieties with higher NUE.Ammonium (NH4+) and nitrate (NO3) are the main N species absorbed and utilized by crops, and NO3 accumulation and utilization are of major emphasis for N nutrient studies in dry land crops, such as Brassica napus. Several studies revealed the close relationship between NO3 content and NUE in plant tissues (Shen et al., 2003; Zhang et al., 2012; Tang et al., 2013; Han et al., 2015a). When plants are sufficiently illuminated, NO3 assimilation efficiency significantly increase in shoots compared with roots (Smirnoff and Stewart, 1985; Tang et al., 2013). Consequently, under daytime with optimal illumination, higher proportion of NO3 in plant tissue is transported from root to shoot, as an advantageous physiological adaptation that reduces the cost of energy for metabolism (Tang et al., 2013). NO3 assimilation in plant shoots can therefore take advantage of solar energy while improving NUE (Smirnoff and Stewart, 1985; Andrews, 1986; Tang et al., 2012, 2013).The NO3 long-distance transport and distribution between root and shoot is regulated by two genes encoding long transport mechanisms. NRT1.5 is responsible for xylem NO3 loading, while NRT1.8 is responsible for xylem NO3 unloading (Lin et al., 2008; Li et al., 2010). Expression of the two genes is influenced by NO3 concentration. NRT1.5 is strongly induced by NO3 (Lin et al., 2008), while NRT1.8 expression is extremely up-regulated in nrt1.5 mutants (Chen et al., 2012). A negative correlation between the extents of expression of the two genes was observed when plants are subjected to abiotic stresses (Chen et al., 2012). Moreover, expression of NRT1.5 is strongly inhibited by 1-aminocyclopropane-1-carboxylic acid (ACC) and methyl jasmonate (MeJA), whereas the expression of NRT1.8 is significantly up-regulated (Zhang et al., 2014). Based on these studies, we argue that the expression and functioning of NO3 long-distance transport genes NRT1.5 and NRT1.8 are regulated by cytosolic NO3 concentration. In addition, the vacuolar and cytosolic NO3 distribution is likely regulated by proton pumps located within the tonoplast (V-ATPase and V-PPase; Granstedt and Huffaker, 1982; Glass et al., 2002; Krebs et al., 2010). Therefore, NO3 use efficiency must be affected by NO3 long-distant transport (between shoot and root) and short-distant transport (between vacuole and cytosol). However, the physiological mechanisms controlling this regulation are still obscure.Previous studies showed that the chloride channel protein (CLCa) is mainly responsible for vacuole NO3 short-distance transport, as it is the main channel for NO3 movement between the vacuoles and cytosol (De Angeli et al., 2006; Wege et al., 2014). The vacuole proton-pumps (V-ATPase and V-PPase) located in the tonoplast supply energy for active transport of NO3 and accumulation within the vacuole (Gaxiola et al., 2001; Brüx et al., 2008; Krebs et al., 2010). Despite the fact about 90% of the volume of mature plant cells is occupied by vacuoles, vacuolar NO3 cannot be efficiently assimilated because the enzyme nitrate reductase (NR) is cytosolic (Shen et al., 2003; Han et al., 2015a). However, retranslocation of NO3 from the vacuole to the cytosol will permit its immediate assimilation and utilization.Generally, NO3 concentrations in plant cell vacuoles and the cytoplasm are in the range of 30–50 mol m−3 and 3–5 mol m−3, respectively (Martinoia et al., 1981, 2000). Because vacuoles are obviously the organelle for high NO3 accumulation and storage in plant tissues, their function in NO3 use efficiency cannot be ignored (Martinoia et al., 1981; Zhang et al., 2012; Han et al., 2015b). NO3 assimilatory system in the cytoplasm is sufficient for its assimilation when it is transported out of the vacuoles. Therefore, NO3 use efficiency could in part be dependent on vacuolar-cytosolic NO3 short-distance transport in plant tissues (Martinoia et al., 1981; Shen et al., 2003; Zhang et al., 2012; Han et al., 2015a).Evidently, NO3 use efficiency is regulated by both NO3 long-distance transport from root to shoot and short-distance transport and distribution between vacuoles and cytoplasm within cells (Glass et al., 2002; Dechorgnat et al., 2011; Han et al., 2015a). Although vacuoles compartment excess NO3 that accumulates in plant cells (Granstedt and Huffaker, 1982; Krebs et al., 2010), neither NO3 inducible NR genes (NIA1 and NIA2; Fan et al., 2007; Han et al., 2015a) nor the NO3 long-distance transport gene NRT1.5 (Lin et al., 2008) are regulated by vacuolar NO3, even though they are essential for NO3 assimilation. Only NO3 transported from the vacuole to the cytosol can play a role in regulating NO3 inducible genes. Consequently, we argue that both NO3 assimilation in cells and its long-distance transport from root to shoot are regulated by cytosolic NO3 concentration. However, this hypothesis needs to be substantiated. The mechanisms underlying both NO3 short-distance (Gaxiola et al., 2001; De Angeli et al., 2006; Brüx et al., 2008; Krebs et al., 2010) and long-distance transport (Lin et al., 2008; Li et al., 2010) have been previously investigated, yet the underlying mechanisms regulating the flux of NO3 and the obvious relationship between the two transport pathways, as well as their relation to NUE, are not well understood.The NRT family of genes play a partial role in vacuolar NO3 accumulation in petioles (Chiu et al., 2004) and seed tissues (Chopin et al., 2007), whereas the proton pumps and CLCa system in the tonoplast play a major role in accumulating NO3 in vacuoles (Gaxiola et al., 2001; De Angeli et al., 2006; Brüx et al., 2008; Krebs et al., 2010). The vacuolar NO3 short-distance transport system is spread throughout the plant tissues and is the principal means by which vacuolar NO3 short-distance transport and distribution is controlled (De Angeli et al., 2006; Krebs et al., 2010).The NRT genes seem to work synergistically to control NO3 long-distance transport between roots and shoots. NRT1.9 is responsible for NO3 loading into the phloem (Wang and Tsay, 2011), whereas NO3 loading and unloading into xylem are regulated by NRT1.5 and NRT1.8, respectively (Lin et al., 2008; Li et al.; 2010). Phloem transport mainly involves organic N; the inorganic-N (NO3) concentrations in the phloem sap are typically very low, ranging from one-tenth to one-hundredth of that of the inorganic-N in xylem sap (Lin et al., 2008; Fan et al., 2009). Therefore, this study focused on NO3 short-distance transport mediated through the tonoplast proton pumps and the CLCa system and the long-distant transport mechanisms responsible for xylem NO3 loading and unloading via NRT1.5 and NRT1.8, respectively.Questions related to how long- and short-distance transport of NO3 are coupled in plant tissues and their role in determining NUE were addressed using a pair of high- and low-NUE B. napus genotypes and Arabidopsis (Arabidopsis thaliana). Application of proton pump inhibitors and ACC in the former, and use of mutants with defective proton pumps in the latter, allowed experimental distinction of the physiological mechanisms regulating these processes. Data presented here provide strong evidence from both model plants supporting this linkage and strongly suggest that cytosolic NO3 concentration in roots regulates NO3 long-distance transport from roots to shoots. We also investigated how NO3 concentration in plant tissues would be affected by NO3 long-distance transport, vacuolar NO3 sequestration, and the ensuing relationship with NO3 use efficiency. We also proposed the physiological mechanisms likely to be important for enhancing NO3 use efficiency in plants. These findings will provide scientific rationales for improving NUE in important industrial and food crops.  相似文献   
84.
IKK复合物由IKKα、IKKβ和IKKγ组成,是NF-κB通路中的重要分子,主要调控NF-κB通路的活化。近年的研究发现,IKK复合物还存在许多NF-κB非相关性的功能,主要涉及肿瘤发生、应激反应、转录调控、免疫功能及细胞周期调控等方面。IKK复合物的NF-κB非相关性的功能研究集中于IKKα和IKKβ亚基,并且存在激酶活性依赖和非依赖2种作用方式。对于该功能的深入探讨,对全面理解IKK分子的生理病理功能十分重要,并且为IKK分子的研究提出了一个新的方向。  相似文献   
85.
86.
准确评估土壤无机碳库的大小及其分布特征有助于全面理解陆地生态系统碳循环与气候变暖之间的反馈关系.然而, 由于深层土壤剖面信息匮乏, 使得目前学术界对深层土壤无机碳库的了解十分有限.该研究基于342个3 m深度和177个50 cm深度的土壤剖面信息, 采用克里格插值方法估算了青藏高原高寒草地不同深度的土壤无机碳库大小, 并在此基础上分析了该地区土壤无机碳密度的分布特征.结果显示, 青藏高原高寒草地0-50 cm,0-1 m,0-2 m和0-3 m深度的土壤无机碳库大小分别为8.26,17.82,36.33和54.29 Pg C, 对应的土壤无机碳密度分别为7.22,15.58,31.76和47.46 kg C·m-2.研究区土壤无机碳密度总体呈现由东南向西北增加的趋势; 高寒草原土壤的无机碳密度显著大于高寒草甸的无机碳密度.整体上, 不同深度的高寒草原无机碳库约占整个研究区无机碳库的63%-66%.此外, 深层土壤中储存了大量无机碳, 1 m以下土壤无机碳库是1 m以内无机碳库的2倍.两种草地类型土壤无机碳的垂直分布存在差异: 对高寒草原而言, 0-50 cm土壤无机碳所占的比例最大; 但对高寒草甸而言, 在100-150 cm深度土壤无机碳出现富集.这些结果表明青藏高原深层土壤是一个重要的无机碳库, 需在未来碳循环研究中予以重视.  相似文献   
87.
我国湖泊众多,仅长江中下游地区沿岸各类湖泊达4000多个,约占我国湖泊总面积的30%,其中,分布着我国的五大主体湖:鄱阳湖、洞庭湖、太湖、巢湖、洪泽湖和以洪湖为主的江汉平原湖群1。这些湖泊蕴藏着大量宝贵的淡水资源,具有饮用水、航运和渔业养殖等多种功能和作用,在国民经济发展中作出了重大的贡献。    相似文献   
88.
野桑蚕酚氧化酶原基因cDNA的分子克隆及其特征   总被引:1,自引:0,他引:1  
酚氧化酶在昆虫的免疫防御机制中起着重要作用。利用RT-PCR和RACE方法,克隆了野桑蚕酚氧化酶原基因,获得了其cDNA序列。该序列长2 134 bp,含有一个2 082 bp的完整开放阅读框,编码一个由693个氨基酸残基组成的蛋白质。推导的氨基酸序列与其他鳞翅目昆虫PPO2基因相应氨基酸序列有较高的同源性,该序列具有它们的PPO基因所共有的典型特征。组织特异性表达分析表明了该基因在野桑蚕5龄幼虫的血细胞、体壁、头部、精巢、卵巢、脂肪体和中肠等组织及其不同的发育阶段均有表达。这些结果为进一步研究野桑蚕酚氧化酶原基因的功能提供了分子基础。  相似文献   
89.
采集了浙江、福建、江苏、湖南、湖北、四川、重庆、黑龙江、河南9个省的稗(Echinochloa crus-galli(L.)P.Beauv.)及其变种的33份种子,分别播种在相同的环境下,获得33个种群,测定了种群的16个形态性状,筛选出重复性好的9条ISSR引物,从33个种群中扩增出了109个位点。基于这些形态性状和ISSR位点信息,对33个种群先进行主成分分析,在此基础上再进行模糊均值聚类分析,探讨了它们的形态和遗传变化特点,及其与形态-遗传-地理背景三者之间的关系。主要结论如下:(1)33个种群可以鉴别出形态性状相对一致的4组,能够识别出西来稗(E.crus-galli var.zelayensis(Kunth)Farw.)、无芒稗(E.crus-galli var.mitis(Pursh)Peterm.)、细叶旱稗(E.crus-galli var.praticola Ohwi);(2)基于109个位点信息对33个种群进行聚类分析得到了6组,部分组与形态聚类分组有一定的对应性;(3)33个稗草种群的遗传分化受地理背景因素的影响(r=0.684,n=33,P<0.001);形态变异也有较明显的遗传背景因素(r=0.425,n=33,P<0.02)。在相对一致的稻田生境中,可能存在着形态上的趋同适应,使遗传上分化的组间在形态上又往往有交叉过渡,致使稗原变种(E.crus-galli var.crus-galli)、西来稗、无芒稗、短芒稗(E.crus-galli var.breviseta(Döll)Podp.)在形态上难以区别;(4)基于遗传和形态数据分析,发现细叶旱稗无论在形态上,还是遗传上,均形成了明显的一组,推测与该种长期适应于干旱生境有关,建议将细叶旱稗提升为种的水平,并将其命名为Echinochloa praticola(Ohwi)Guo S L,Lu Y L,Yin L P&Zou M Y。  相似文献   
90.
Na+, K+-ATPase beta2 subunit (NKA1b2) is not only a regulator of Na+, K+-ATPase, but also functions in the interaction between neuron and glia cells as a Ca2+-dependent adhesion molecule. To further study the function of NKA1b2, the anti-NKA1b2 polyclonal antibody was prepared to recognize the outer-membrane carboxyl portion segment of NKA1b2. The coding region for amino acids 190-290 at the carboxyl portion of NKA1b2 (NKA1b2-CP) was sub-cloned into the vector pGEX-4T-2 and introduced into the Escherichia coli BL21(DE3) cell for efficient soluble expression. The amino acid sequence of expressed protein was determined using mass spectrometry following Mascot analysis. After purification, GST-NKA-beta2-CP was used to immunize the adult rabbits following standard protocols. The produced antiserum could detect the NKA1b2 protein expressed not only in the prokaryotic cells (E. coli) but also in the eukaryotic cells (COS7) transfected with NKA1b2 expression vector (pEGFP-NKA1b2). Furthermore, the antiserum was used for determining the localization of NKA1b2 in primary culture of neonatal rat neurons using immunohistochemical technique. Results demonstrated that NKA1b2 was localized both in the cytoplasm and cellular membrane. The preparation of anti-NKA-beta2-CP polyclonal antibody will facilitate further functional study on NKA1b2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号