首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24411篇
  免费   1955篇
  国内免费   1832篇
  28198篇
  2024年   55篇
  2023年   301篇
  2022年   796篇
  2021年   1285篇
  2020年   886篇
  2019年   1040篇
  2018年   1031篇
  2017年   748篇
  2016年   1069篇
  2015年   1468篇
  2014年   1724篇
  2013年   1890篇
  2012年   2247篇
  2011年   1925篇
  2010年   1168篇
  2009年   1020篇
  2008年   1202篇
  2007年   1063篇
  2006年   921篇
  2005年   811篇
  2004年   693篇
  2003年   628篇
  2002年   544篇
  2001年   481篇
  2000年   417篇
  1999年   403篇
  1998年   254篇
  1997年   269篇
  1996年   256篇
  1995年   242篇
  1994年   220篇
  1993年   136篇
  1992年   206篇
  1991年   145篇
  1990年   130篇
  1989年   109篇
  1988年   73篇
  1987年   94篇
  1986年   56篇
  1985年   56篇
  1984年   43篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   8篇
  1979年   6篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
171.
172.
Melatonin has been reported to have tumor-suppressive effects via comprehensive molecular mechanisms, and long non-coding RNAs (lncRNAs) may participate in this process. However, the mechanism by which melatonin affects the function of lncRNAs in triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, is still unknown. Therefore, we aimed to investigate the differentially expressed mRNAs and lncRNAs in melatonin-treated TNBC cells and the interaction mechanisms. Microarray analyses were performed to identify differentially expressed mRNAs and lncRNAs in TNBC cell lines after melatonin treatment. To explore the functions and underlying mechanisms of the mRNAs and lncRNAs candidates, a series of in vitro experiments were conducted, including CCK-8, Transwell, colony formation, luciferase reporter gene, and RNA immunoprecipitation (RIP) assays, and mouse xenograft models were established. We found that after melatonin treatment, FUNDC1 and lnc049808 downregulated in TNBC cell lines. Knockdown of FUNDC1 and lnc049808 inhibited TNBC cell proliferation, invasion, and metastasis. Moreover, lnc049808 and FUNDC1 acted as competing endogenous RNAs (ceRNAs) for binding to miR-101. These findings indicated that melatonin inhibited TNBC progression through the lnc049808-FUNDC1 pathway and melatonin could be used as a potential therapeutic agent for TNBC.Subject terms: Breast cancer, Non-coding RNAs  相似文献   
173.
174.
Huntington disease is a genetic neurodegenerative disorder that arises from an expanded polyglutamine region in the N terminus of the HD gene product, huntingtin. Protein inclusions comprised of N-terminal fragments of mutant huntingtin are a characteristic feature of disease, though are likely to play a protective role rather than a causative one in neurodegeneration. Soluble oligomeric assemblies of huntingtin formed early in the aggregation process are candidate toxic species in HD. In the present study, we established an in vitro system to generate recombinant huntingtin in mammalian cells. Using both denaturing and native gel analysis, we have identified novel oligomeric forms of mammalian-derived expanded huntingtin exon-1 N-terminal fragment. These species are transient and were not previously detected using bacterially expressed exon-1 protein. Importantly, these species are recognized by 3B5H10, an antibody that recognizes a two-stranded hairpin conformation of expanded polyglutamine believed to be associated with a toxic form of huntingtin. Interestingly, comparable oligomeric species were not observed for expanded huntingtin shortstop, a 117-amino acid fragment of huntingtin shown previously in mammalian cell lines and transgenic mice, and here in primary cortical neurons, to be non-toxic. Further, we demonstrate that expanded huntingtin shortstop has a reduced ability to form amyloid-like fibrils characteristic of the aggregation pathway for toxic expanded polyglutamine proteins. Taken together, these data provide a possible candidate toxic species in HD. In addition, these studies demonstrate the fundamental differences in early aggregation events between mutant huntingtin exon-1 and shortstop proteins that may underlie the differences in toxicity.  相似文献   
175.
176.
Y Zhu  W Hua  M Xu  W He  X Wang  Y Dai  S Zhao  J Tang  S Wang  S Lu 《PloS one》2012,7(8):e44032

Background

Schistosomiasis japonica remains a real threat to public health in China. The currently used immunodiagnostic assays are sensitive and have a certain degree of specificity, however, they all use complex crude antigens, are based on detection of schistosome-specific antibodies, and have been shown to cross-react with other parasitic diseases. Therefore, these assays cannot be used to evaluate chemotherapy efficacy. The development of highly sensitive and highly specific immunodiagnostic techniques that can monitor the decline of antibodies specific for S. japonica will be extremely valuable as part of the ongoing strategy to control schistosomiasis in endemic areas. Here we report on the identification of unique fraction antigens of soluble egg antigen (SEA) to which the antibodies disappear 7 weeks after effective treatment. Furthermore, we use these SEA fractions to develop a modified assay with both high sensitivity and specificity.

Methodology/Principal Findings

SEA of S. japonicum was fractionated by electrophoresis using 7.5% SDS-PAGE under non-reducing conditions. The SEA fraction antigens to which antibodies were decreased soon after treatment were collected and used as the detection antigens to establish the FA-ELISA. Sera from patients with acute and chronic schistosomiasis infection, healthy people, and those with other parasitic diseases, were used to evaluate their sensitivity and specificity. Furthermore, sera from patients with chronic schistosomiasis infection were evaluated before and after treatment at different time points to evaluate their chemotherapeutic efficacy.

Conclusion/Significance

We demonstrated that this novel FA-ELISA provided high sensitivity and specificity, with very low cross-reactivity, and can serve as an effective tool to determine the efficacy of chemotherapy against S. japonicum.  相似文献   
177.
178.
179.
Shiga toxin 1 and 2 production is a cardinal virulence trait of enterohemorrhagic Escherichia coli infection that causes a spectrum of intestinal and systemic pathology. However, intestinal sites of enterohemorrhagic E. coli colonization during the human infection and how the Shiga toxins are taken up and cross the globotriaosylceramide (Gb3) receptor-negative intestinal epithelial cells remain largely uncharacterized. We used samples of human intestinal tissue from patients with E. coli O157:H7 infection to detect the intestinal sites of bacterial colonization and characterize the distribution of Shiga toxins. We further used a model of largely Gb3-negative T84 intestinal epithelial monolayers treated with B-subunit of Shiga toxin 1 to determine the mechanisms of non-receptor-mediated toxin uptake. We now report that E. coli O157:H7 were found at the apical surface of epithelial cells only in the ileocecal valve area and that both toxins were present in large amounts inside surface and crypt epithelial cells in all tested intestinal samples. Our in vitro data suggest that macropinocytosis mediated through Src activation significantly increases toxin endocytosis by intestinal epithelial cells and also stimulates toxin transcellular transcytosis. We conclude that Shiga toxin is taken up by human intestinal epithelial cells during E. coli O157:H7 infection regardless of the presence of bacterial colonies. Macropinocytosis might be responsible for toxin uptake by Gb3-free intestinal epithelial cells and transcytosis. These observations provide new insights into the understanding of Shiga toxin contribution to enterohemorrhagic E. coli-related intestinal and systemic diseases.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号