首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14061篇
  免费   1314篇
  国内免费   2058篇
  2024年   42篇
  2023年   165篇
  2022年   312篇
  2021年   559篇
  2020年   471篇
  2019年   604篇
  2018年   575篇
  2017年   477篇
  2016年   664篇
  2015年   878篇
  2014年   1091篇
  2013年   1141篇
  2012年   1308篇
  2011年   1259篇
  2010年   878篇
  2009年   753篇
  2008年   879篇
  2007年   803篇
  2006年   709篇
  2005年   690篇
  2004年   625篇
  2003年   575篇
  2002年   508篇
  2001年   267篇
  2000年   211篇
  1999年   174篇
  1998年   160篇
  1997年   124篇
  1996年   94篇
  1995年   64篇
  1994年   54篇
  1993年   38篇
  1992年   41篇
  1991年   35篇
  1990年   24篇
  1989年   25篇
  1988年   26篇
  1987年   11篇
  1986年   11篇
  1985年   11篇
  1984年   10篇
  1983年   8篇
  1982年   11篇
  1981年   7篇
  1980年   6篇
  1979年   8篇
  1972年   6篇
  1970年   5篇
  1965年   4篇
  1950年   4篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
211.
Highlights? MIWI is a substrate of APC/C, and piRNA loading is essential for MIWI ubiquitination ? piRNA loading promotes MIWI binding to the APC/C substrate-binding subunit ? MIWI and piRNAs are coordinately eliminated in late spermatids ? Inhibition of MIWI destruction in late spermatids prevents sperm maturation  相似文献   
212.
Dietary restriction (DR) has many beneficial effects, but the detailed metabolic mechanism remains largely unresolved. As diet is essentially related to metabolism, we investigated the metabolite profiles of urines from control and DR animals using NMR and LC/MS metabolomic approaches. Multivariate analysis presented distinctive metabolic profiles and marker signals from glucuronide and glycine conjugation pathways in the DR group. Broad profiling of the urine phase II metabolites with neutral loss scanning showed that levels of glucuronide and glycine conjugation metabolites were generally higher in the DR group. The up-regulation of phase II detoxification in the DR group was confirmed by mRNA and protein expression levels of uridinediphospho-glucuronosyltransferase and glycine-N-acyltransferase in actual liver tissues. Histopathology and serum biochemistry showed that DR was correlated with the beneficial effects of low levels of serum alanine transaminase and glycogen granules in liver. In addition, the Nuclear factor (erythroid-derived 2)-like 2 signaling pathway was shown to be up-regulated, providing a mechanistic clue regarding the enhanced phase II detoxification in liver tissue. Taken together, our metabolomic and biochemical studies provide a possible metabolic perspective for understanding the complex mechanism underlying the beneficial effects of DR.It has been known for more than 70 years that dietary restriction (DR)1 can extend the life span and delay the onset of age-related diseases, based on an early rodent study showing such effects (1). However, not until the 1980s was DR recognized as a good model for studying the mechanism of or inhibitory measures for aging (2). So far, extensive studies employing model organisms such as yeasts, nematodes, fruit flies, and rodents have shown that DR has beneficial effects in most of the species studied (for a review, see Ref. 3). Most notably, a recent 20-year-long study showed that monkeys, the species closest to humans, also benefit from DR similarly (4). Although there has not been (or could not have been) a systematic study on the effects of DR on the human life span, several longitudinal studies strongly suggest that changes in dietary intake can affect the life span and/or disease-associated marker values greatly (57).This inverse correlation between dietary intake and long-term health strongly indicates that DR''s effects should involve metabolism, and that DR elicits the reorganization of metabolic pathways. It also seems quite natural that something we eat should affect the body''s metabolism. Despite this seemingly straightforward relationship between diet and metabolism, the mechanisms underlying the beneficial effects of DR are anything but simple. Intensive efforts, spanning decades, to understand the mechanisms of DR have identified several genes that might mediate the effects of DR, such as mTOR, IGF-1, AMPK, and SIRT1 (for a review, see Ref. 8). Still, most of them are involved in early nutrient-sensing steps, and specific metabolic pathways, especially those at the final steps actually responsible for the effects of DR, are largely unknown.This might be at least partially due to the fact that previous studies have focused mostly on genomic or proteomic changes induced by DR, instead of looking at changes in metabolism or metabolites directly. Metabolomics, which has gained much interest in recent years (911), might be a good alternative for addressing the mechanistic uncertainty of DR''s effects, with the direct profiling of metabolic changes elicited by environmental factors. In contrast to genomics or proteomics, which often employ DNA or proteins extracted from particular tissues, metabolomics studies mostly employ body fluids (i.e. urine or blood), which can reflect the metabolic status of multiple organs, enabling investigations at a more systemic level. In particular, urine has been used extensively to study the mechanism of external stimuli (i.e. drugs or toxic insults) at most major target organs, such as the lung, kidney, liver, or heart (1218). Still, metabolomics studies of DR effects have been very limited. A few previous ones reported the changes in phenomenological urine metabolic markers with DR, without identification and/or validation of specific metabolic pathways reflected at the actual tissue or enzyme level (19, 20). Therefore, those studies fell short of providing a mechanistic perspective on DR''s effects. In addition, they employed either NMR or LC/MS approaches without validation across the two analytical platforms.Among the metabolic pathways that can directly affect the integrity of multiple organs, and hence long-term health, are phase II detoxification pathways (21). Typically, lipophilic endo/xenobiotics are metabolized first by a phase I system, such as cytochrome P450, which modifies the compounds so that they have hydrophilic functional groups for increased solubility. In many cases, though, these modifications might increase the reactivity of the compounds, leading to cellular damage. The phase II detoxification systems involve conjugation reactions that attach charged hydrophilic molecular moieties to reactive metabolites, thus facilitating the elimination of the harmful metabolites from body, ultimately reducing their toxicity (22). These systems are thus especially important in protecting cellular macromolecules, such as DNA and proteins, from reactive electrophilic or nucleophilic metabolites. The enzymes involved in these processes include glutathione-S-transferase (GST), sulfotransferase, glycine-N-acyltransferase (GLYAT), and uridinediphospho-glucuronosyltransferase (UGT), with the last enzyme being the most prevalent (23). The beneficial effects of phase II reactions have been particularly studied in relation to the mechanism of healthy dietary ingredients. It is well believed that many such foods can prevent cancers (hence the term “chemoprevention”) by inducing phase II detoxification systems (2426). Although DR also substantially reduces the incidence of cancers, the exact mechanism remains elusive.Here, we employed multi-platform metabolomics to obtain metabolic perspectives on the beneficial effects of DR on rats. Our results about urine metabolomics markers suggest that DR enhances the phase II detoxification pathway, which was confirmed by means of conjugation metabolite profiling and changes in mRNA/protein expression levels of phase II enzymes in actual liver tissues. A possible molecular mechanism was also addressed through the exploration of Nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) pathway activation upon DR. We believe the current study provides new metabolic insights into DR''s beneficial effects, as well as a workflow for studying DR''s effects from a metabolic perspective.  相似文献   
213.
A wide variety of base damages and single-strand breaks formed by reactive oxygen species during metabolic activation of polycyclic aromatic hydrocarbons (PAHs) have been recognized to be involved in PAH carcinogenesis. In this study, alkaline comet assay was used to detect the DNA damage in peripheral blood lymphocytes among 143 coke-oven workers and 50 non-coke-oven workers, and the effects of genetic polymorphisms of XRCC1 and ERCC2 genes on DNA damage were evaluated. The olive tail moment was significantly higher in coke-oven workers than in non-coke-oven workers (2.6, 95% CI=2.1–3.3 versus 1.0, 95% CI=0.8–1.2, p<0.01), and significant correlation between ln-transformed urinary 1-OHP and ln-transformed olive tail moment was found in total population (n=193, Pearson's r=0.393, p<0.001) and in coke-oven workers (n=143, Pearson's r=0.224, p=0.007). The olive tail moment was significantly higher in coke-oven workers with GA genotype of G27466A polymorphism of XRCC1 than those with GG genotype (4.6, 95% CI=2.5–8.7 versus 2.4, 95% CI=1.9–2.9, p<0.01 with adjustment for covariates). No significant associations between C26304T, G28152A and G36189A polymorphisms of XRCC1 and G23591A and A35931C polymorphisms of ERCC2 and olive tail moment were found in both groups. The study showed that the alkaline comet assay is a suitable biomarker in the detection of DNA damage among coke-oven workers and it suggested that the A allele of G27466A polymorphism of XRCC1 may be associated with decreased DNA repair capacity toward PAH-induced base damage and strand breaks.  相似文献   
214.
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.  相似文献   
215.
For effective control of foot-and-mouth disease (FMD), the development of rapid diagnostic systems and vaccines are required against its etiological agent, FMD virus (FMDV). To accomplish this, efficient large-scale expression of the FMDV VP1 protein, with high solubility, needs to be optimized. We attempted to produce high levels of a serotype O FMDV VP1 epitope in Escherichia coli. We identified the subtype-independent serotype O FMDV VP1 epitope sequence and used it to construct a glutathione S-transferase (GST) fusion protein. For efficient production of the FMDV VP1 epitope fused to GST (VP1e–GST), four E. coli strains and three temperatures were examined. The conditions yielding the greatest level of VP1e–GST with highest solubility were achieved with E. coli BL21(DE3) at 25 °C. For high-level production, fed-batch cultures were conducted in 5-l bioreactors. When cells were induced at a high density and complex feeding solutions were supplied, approximately 11 g of VP1e–GST was obtained from a 2.9-l culture. Following purification, the VP1 epitope was used to immunize rabbits, and we confirmed that it induced an immune response.  相似文献   
216.
217.
In the course of evolution, the genomes of grasses have maintained an observable degree of gene order conservation. The information available for already sequenced genomes can be used to predict the gene order of nonsequenced species by means of comparative colinearity studies. The “Wheat Zapper” application presented here performs on-demand colinearity analysis between wheat, rice, Sorghum, and Brachypodium in a simple, time efficient, and flexible manner. This application was specifically designed to provide plant scientists with a set of tools, comprising not only synteny inference, but also automated primer design, intron/exon boundaries prediction, visual representation using the graphic tool Circos 0.53, and the possibility of downloading FASTA sequences for downstream applications. Quality of the “Wheat Zapper” prediction was confirmed against the genome of maize, with good correlation (r?>?0.83) observed between the gene order predicted on the basis of synteny and their actual position on the genome. Further, the accuracy of “Wheat Zapper” was calculated at 0.65 considering the “Genome Zipper” application as the “gold” standard. The differences between these two tools are amply discussed, making the point that “Wheat Zapper” is an accurate and reliable on-demand tool that is sure to benefit the cereal scientific community. The Wheat Zapper is available at http://wge.ndsu.nodak.edu/wheatzapper/.  相似文献   
218.
The complete set of unique γ-gliadin genes is described for the wheat cultivar Chinese Spring using a combination of expressed sequence tag (EST) and Roche 454 DNA sequences. Assemblies of Chinese Spring ESTs yielded 11 different γ-gliadin gene sequences. Two of the sequences encode identical polypeptides and are assumed to be the result of a recent gene duplication. One gene has a 3′ coding mutation that changes the reading frame in the final eight codons. A second assembly of Chinese Spring γ-gliadin sequences was generated using Roche 454 total genomic DNA sequences. The 454 assembly confirmed the same 11 active genes as the EST assembly plus two pseudogenes not represented by ESTs. These 13 γ-gliadin sequences represent the complete unique set of γ-gliadin genes for cv Chinese Spring, although not ruled out are additional genes that are exact duplications of these 13 genes. A comparison with the ESTs of two other hexaploid cultivars (Butte 86 and Recital) finds that the most active genes are present in all three cultivars, with exceptions likely due to too few ESTs for detection in Butte 86 and Recital. A comparison of the numbers of ESTs per gene indicates differential levels of expression within the γ-gliadin gene family. Genome assignments were made for 6 of the 13 Chinese Spring γ-gliadin genes, i.e., one assignment from a match to two γ-gliadin genes found within a tetraploid wheat A genome BAC and four genes that match four distinct γ-gliadin sequences assembled from Roche 454 sequences from Aegilops tauschii, the hexaploid wheat D-genome ancestor.  相似文献   
219.
Background aimsThe potential protective effects of mesenchymal stromal cells (MSCs) on some kidney diseases has been reported. However, the effect of MSCs on doxorubicin-induced nephropathy is still poorly understood.MethodsRats with doxorubicin-induced kidney injuries were treated with human cord-derived MSCs. Human MSCs were first labeled with 5-bromo-2′-deoxyuridine to track their homing in kidneys after infusion.ResultsAlleviation of proteinuria, decreased serum albumin, alleviation of lipid disorders and histologic alterations were found in rats 4 weeks after treatment with MSCs, particularly in rats that were given repeat doses. Decreases in serum levels of interleukin-6, tumor necrosis factor-α and prostaglandin E2 and decreases in messenger RNA levels of kidney tissue cylooxygenase-2 and EP4 were found in MSC-treated rats. MSC-treated rats also displayed an increase in serum interleukin-10 levels.ConclusionsThese results indicate that MSCs ameliorate doxorubicin-induced kidney injuries and inflammation, suggesting a potential clinical treatment for inflammatory kidney diseases.  相似文献   
220.
Producing gene fusions through genomic structural rearrangements is a major mechanism for tumor evolution. Therefore, accurately detecting gene fusions and the originating rearrangements is of great importance for personalized cancer diagnosis and targeted therapy. We present a tool, BreakTrans, that systematically maps predicted gene fusions to structural rearrangements. Thus, BreakTrans not only validates both types of predictions, but also provides mechanistic interpretations. BreakTrans effectively validates known fusions and discovers novel events in a breast cancer cell line. Applying BreakTrans to 43 breast cancer samples in The Cancer Genome Atlas identifies 90 genomically validated gene fusions. BreakTrans is available at http://bioinformatics.mdanderson.org/main/BreakTrans  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号