首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22093篇
  免费   1876篇
  国内免费   2488篇
  26457篇
  2024年   75篇
  2023年   317篇
  2022年   664篇
  2021年   1116篇
  2020年   807篇
  2019年   969篇
  2018年   972篇
  2017年   760篇
  2016年   1024篇
  2015年   1399篇
  2014年   1672篇
  2013年   1765篇
  2012年   2068篇
  2011年   1899篇
  2010年   1274篇
  2009年   1067篇
  2008年   1232篇
  2007年   1109篇
  2006年   984篇
  2005年   905篇
  2004年   787篇
  2003年   717篇
  2002年   624篇
  2001年   345篇
  2000年   300篇
  1999年   266篇
  1998年   233篇
  1997年   201篇
  1996年   141篇
  1995年   114篇
  1994年   120篇
  1993年   68篇
  1992年   73篇
  1991年   64篇
  1990年   46篇
  1989年   53篇
  1988年   37篇
  1987年   25篇
  1986年   15篇
  1985年   29篇
  1984年   15篇
  1983年   16篇
  1982年   16篇
  1981年   8篇
  1980年   9篇
  1979年   12篇
  1978年   6篇
  1972年   6篇
  1970年   5篇
  1965年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Camellia oleifera is believed to exhibit a complex intraspecific polyploidy phenomenon. Abnormal microsporogenesis can promote the formation of unreduced gametes in plants and lead to sexual polyploidy, so it is hypothesized that improper meiosis probably results in the formation of natural polyploidy in Camellia oleifera. In this study, based on the cytological observation of meiosis in pollen mother cells (PMCs), we found natural 2n pollen for the first time in Camellia oleifera, which may lead to the formation of natural polyploids by sexual polyploidization. Additionally, abnormal cytological behaviour during meiosis, including univalent chromosomes, extraequatorial chromosomes, early segregation, laggard chromosomes, chromosome stickiness, asynchronous meiosis and deviant cytokinesis (monad, dyads, triads), was observed, which could be the cause of 2n pollen formation. Moreover, we confirmed a relationship among the length–width ratio of flower buds, stylet length and microsporogenesis. This result suggested that we can immediately determine the microsporogenesis stages by phenotypic characteristics, which may be applicable to breeding advanced germplasm in Camellia oleifera.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01002-5.  相似文献   
62.
A moving aeration-membrane (MAM) bioreactor was employed for the production of 2 μg/mL of tissue type Plasminogen Activator (tPA) in serum free medium from normal human fibroblast cells. This system could maintain high cell density for long periods of steady state conditions in perfusion cultivation. Under normal operating conditions, shear stress was as low as 0.65 dynes/cm2 at the agitation speed of 80 rpm. Even though cell density gradually decreased with increasing agitation speed, tPA production increased linearly with increasing shear stress within a moderate range. This culture system allowed production of 2 μg tPA/mL while maintaining a high cell density of 1.0×107 viable cells/mL.  相似文献   
63.
Loranthus yadoriki, one of the Korean mistletoe species, has been already known for anti-viral effects, but the molecular basis that it caused apoptosis in cancer cells was not definitely revealed yet. The aim of this study was to estimate the mechanisms of apoptotic cell death of the extract from Loranthus yadoriki (named as ELY) in human cervix HeLa cells. We identified that ELY prevented the proliferation of HeLa cells between 50 and 300 μg/mL which did not affect non-cancerous HaCaT cells. In addition, ELY induced a morphological change and nucleus disruption as well as an accumulation of sub-G1 phase in HeLa cells. The mechanism study, by using western blot analysis, showed that the phosphorylation of Fas-associated death domain (FADD), Bim and Bak was up-regulated by ELY treatment. Furthermore, the expression of cytochrome c and Apaf-1 was increased by ELY treatment. In immunofluorescence staining, the increased intensity of cleaved caspase-3 and cleaved PARP was also observed under ELY treatment. Sequentially, the caspase cascade was activated by ELY from caspase-8 to caspase-3 and from caspase-9 to caspase-3, in both extrinsic and intrinsic pathways. The results of this study demonstrate that ELY has anti-cancer effects on human cervix cancer HeLa cells via caspase cascade in apoptotic signaling pathways.  相似文献   
64.
Free radical damage caused by ferrous iron is involved in the pathogenesis of secondary brain injury after intracerebral hemorrhage (ICH). NF‐E2‐related factor 2 (Nrf2), a major phase II gene regulator that binds to antioxidant response element, represents an important cellular cytoprotective mechanism against oxidative damage. We hypothesized that Nrf2 might protect astrocytes from damage by Fe2+. Therefore, we examined cytotoxicity in primary astrocytes induced by iron overload and evaluated the effects of Fe2+ on Nrf2 expression. The results demonstrated that 24‐h Fe2+ exposure exerted time‐ and concentration‐dependent cytotoxicity in astrocytes. Furthermore, Fe2+ exposure in astrocytes resulted in time‐ and concentration‐dependent increases in Nrf2 expression, which preceded Fe2+ toxicity. Nrf2‐specific siRNA further knocked down Nrf2 levels, resulting in greater Fe2+‐induced astrocyte cytotoxicity. These data indicate that induction of Nrf2 expression could serve as an adaptive self‐defense mechanism, although it is insufficient to completely protect primary astrocytes from Fe2+‐induced neurotoxicity.  相似文献   
65.
The human pituitary tumor transforming gene (hPTTG) serves as a marker for malignancy grading in several cancers, hPTTG is in volved in multiple cellular pathways including cell transformation, apoptosis, DNA repair, genomic instability, mitotic control and angiogenesis induction. However, the molecular mechanisms underlying hPTTG regulation have not been fully explored. In this study, we found that overexpression of histone acetyltransferase (HAT) p300 upregulated hPTTG at the levels of promoter activity, mRNA and protein expression. Moreover, the HAT activity of p300 was critical for its regulatory function. Chromatin immunoprecipitation (ChIP)analysis revealed that overexpression of p300 elevated the level of histone H3 acetylation on the hPTTG promoter. Additionally, the NF-Y sites at the hPTTG promoter exhibited a synergistic effect on upregulation of hPTTG through interacting with p300. We also found thattreatment of 293T cells with the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) increased hPTTG promoter activity. Meanwhile, we provided evidence that HDAC3 decreased hPTTG promoter activity. These data implicate an important role of the histone acetylation modification in the regulation of hPTTG.  相似文献   
66.
Background: Studies investigating the association between genetic polymorphism of glutathione S-transferase T1 (GSTT1) and risk of colorectal cancer have reported conflicting results. In order to clarify the effect of GSTT1 polymorphism on the risk of developing colorectal cancer, we carried out a meta-analysis using published data to obtain more precise estimates of risk. Methods: Electronic searches of PubMed and EMBASE were conducted to select studies for this meta-analysis. Papers were included if they were observational studies investigating the association between GSTT1 polymorphism and colorectal cancer risk. The principal outcome measure was the odds ratio (OR) with 95% confidence interval (CI) for the risk of colorectal cancer associated with GSTT1 null genotype. Results: We identified 30 eligible studies, which included 7635 cases and 12,911 controls. The combined results based on all studies showed that there was a statistically significant link between GSTT1 null genotype and colorectal cancer risk (OR = 1.20, 95% CI = 1.03–1.40). In the analysis of ethnic groups, we observed distinct differences associated with GSTT1 null genotype, the pooled odds ratios for the GSTT1 polymorphism were 1.32 in Caucasians (95% CI = 1.09–1.58) and 1.03 in Asians (95% CI = 0.81–1.32). As far as concerned the interaction between GSTT1 genotype and colorectal cancer risk in relation to smoking history, there was no increase in risk for smokers or nonsmokers with the GSTT1 null genotype (smokers: OR = 1.13, 95% CI = 0.80–1.60, nonsmokers: OR = 0.99, 95% CI = 0.71–1.38). When stratifying by the location of colorectal cancer, we found that there was a statistically significant link in rectal cancer (OR = 1.50, 95% CI = 1.09–2.07), but not in colon cancer (OR = 1.33, 95% CI = 0.94–1.88). No associations could be detected between null GSTT1 polymorphism and age, sex, tumor stage and differentiation. Conclusion: Our current study demonstrates that GSTT1 null genotype is associated with an increased risk of colorectal cancer, specifically, among Caucasians.  相似文献   
67.
Pre‐eclampsia (PE) is deemed an ischemia‐induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography–mass spectrometry (GC–MS). Trophoblast‐specific AMPKα1‐deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle‐delivered A769662. Trophoblast glucose uptake was measured by 2‐NBDG and 2‐deoxy‐d‐[3H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC–MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the ‘go’ and ‘grow’ cellular programs.

Pre‐eclampsia (PE) is associated with trophoblast AMPK hyperactivation, presumably due to LKB1 phosphorylation, and glucose uptake is consequently increased via trafficking of GLUT3 from the cytosol to the plasma membrane. Such translocation enhances glycolytic flux and redirects glucose metabolic intermediates into gluconeogenesis, resulting in PEP accumulation, which not only benefits cell survival but also suppresses invasion by repressing MMPs, and thus in turn modulates switching between the ‘go’ and ‘grow’ cellular programs.  相似文献   
68.
The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.  相似文献   
69.
70.
Regulated cell polarity is central to many cellular processes. We investigated the mechanisms that govern the rapid switching of cell polarity (reversals) during motility of the bacterium Myxococcus xanthus. Cellular reversals are mediated by pole-to-pole oscillations of motility proteins and the frequency of the oscillations is under the control of the Frz chemosensory system. However, the molecular mechanism that creates dynamic polarity remained to be characterized. In this work, we establish that polarization is regulated by the GTP cycle of a Ras-like GTPase, MglA. We initially sought an MglA regulator and purified a protein, MglB, which was found to activate GTP hydrolysis by MglA. Using live fluorescence microscopy, we show that MglA and MglB localize at opposite poles and oscillate oppositely when cells reverse. In absence of MglB, MglA-YFP accumulates at the lagging cell end, leading to a strikingly aberrant reversal cycle. Spatial control of MglA is achieved through the GAP activity of MglB because an MglA mutant that cannot hydrolyze GTP accumulates at the lagging cell end, despite the presence of MglB. Genetic and cell biological studies show that the MglA-GTP cycle controls dynamic polarity and the reversal switch. The study supports a model wherein a chemosensory signal transduction system (Frz) activates reversals by relieving a spatial inhibition at the back pole of the cells: reversals are allowed by Frz-activated switching of MglB to the opposite pole, allowing MglA-GTP to accumulate at the back of the cells and create the polarity switch. In summary, our results provide insight into how bacteria regulate their polarity dynamically, revealing unsuspected conserved regulations with eukaryots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号