首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35234篇
  免费   2708篇
  国内免费   2633篇
  40575篇
  2024年   86篇
  2023年   439篇
  2022年   926篇
  2021年   1528篇
  2020年   1090篇
  2019年   1425篇
  2018年   1419篇
  2017年   1103篇
  2016年   1558篇
  2015年   2149篇
  2014年   2503篇
  2013年   2792篇
  2012年   3151篇
  2011年   2958篇
  2010年   1834篇
  2009年   1584篇
  2008年   1809篇
  2007年   1660篇
  2006年   1508篇
  2005年   1356篇
  2004年   1205篇
  2003年   1062篇
  2002年   954篇
  2001年   549篇
  2000年   505篇
  1999年   444篇
  1998年   323篇
  1997年   277篇
  1996年   266篇
  1995年   222篇
  1994年   184篇
  1993年   136篇
  1992年   186篇
  1991年   179篇
  1990年   145篇
  1989年   119篇
  1988年   119篇
  1987年   110篇
  1986年   76篇
  1985年   98篇
  1984年   59篇
  1983年   61篇
  1982年   36篇
  1981年   33篇
  1980年   29篇
  1979年   43篇
  1978年   32篇
  1977年   22篇
  1975年   31篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
For effective control of foot-and-mouth disease (FMD), the development of rapid diagnostic systems and vaccines are required against its etiological agent, FMD virus (FMDV). To accomplish this, efficient large-scale expression of the FMDV VP1 protein, with high solubility, needs to be optimized. We attempted to produce high levels of a serotype O FMDV VP1 epitope in Escherichia coli. We identified the subtype-independent serotype O FMDV VP1 epitope sequence and used it to construct a glutathione S-transferase (GST) fusion protein. For efficient production of the FMDV VP1 epitope fused to GST (VP1e–GST), four E. coli strains and three temperatures were examined. The conditions yielding the greatest level of VP1e–GST with highest solubility were achieved with E. coli BL21(DE3) at 25 °C. For high-level production, fed-batch cultures were conducted in 5-l bioreactors. When cells were induced at a high density and complex feeding solutions were supplied, approximately 11 g of VP1e–GST was obtained from a 2.9-l culture. Following purification, the VP1 epitope was used to immunize rabbits, and we confirmed that it induced an immune response.  相似文献   
972.
Yarrowia lipolytica requires the expression of a heterologous invertase to grow on a sucrose-based substrate. This work reports the construction of an optimized invertase expression cassette composed of Saccharomyces cerevisiae Suc2p secretion signal sequence followed by the SUC2 sequence and under the control of the strong Y. lipolytica pTEF promoter. This new construction allows a fast and optimal cleavage of sucrose into glucose and fructose and allows cells to reach the maximum growth rate. Contrary to pre-existing constructions, the expression of SUC2 is not sensitive to medium composition in this context. The strain JMY2593, expressing this new cassette with an optimized secretion signal sequence and a strong promoter, produces 4,519 U/l of extracellular invertase in bioreactor experiments compared to 597 U/l in a strain expressing the former invertase construction. The expression of this cassette strongly improved production of invertase and is suitable for simultaneously high production level of citric acid from sucrose-based media.  相似文献   
973.
The food production and processing value chain is under pressure from all sides—increasing demand driven by a growing and more affluent population; dwindling resources caused by urbanization, land erosion, pollution and competing agriculture such as biofuels; and increasing constraints on production methods driven by consumers and regulators demanding higher quality, reduced chemical use, and most of all environmentally beneficial practices ‘from farm to fork’. This pressure can only be addressed by developing efficient and sustainable agricultural practices that are harmonized throughout the value chain, so that renewable resources can be exploited without damaging the environment. Bridges must, therefore, be built between the diverse areas within the food production and processing value chain, including bridges between different stages of production, between currently unlinked agronomic practices, and between the different levels and areas of research to achieve joined-up thinking within the industry, so that the wider impact of different technologies, practices and materials on productivity and sustainability is understood at the local, regional, national and global scales. In this article, we consider the challenges at different stages and levels of the value chain and how new technologies and strategies could be used to build bridges and achieve more sustainable food/feed production in the future.  相似文献   
974.
Interleukin-8 (IL-8) is a common inflammatory factor, which involves in various non-specific pathological processes of inflammation. It has been found that increased endothelial permeability accompanied with high expression of IL-8 at site of injured endothelium and atherosclerotic plaque at early stages, suggesting that IL-8 participated in regulating endothelial permeability in the developing processes of vascular disease. The purpose of this study is to investigate the regulation effects of IL-8 on the vascular endothelial permeability, and the mRNA and protein expression of tight junction components (i.e., ZO-1, Claudin-5 and Occludin). Endothelial cells were stimulated by IL-8 with the dose of 50, 100 and 200 ng/mL, and duration of 2, 4, 6, 8h, respectively. The mRNA and protein expression level of tight junction components with IL-8 under different concentration and duration was examined by RT-PCR and Western blot, respectively. Meanwhile, the integrins induced focal adhesions event with IL-8 stimulation was also investigated. The results showed that IL-8 regulated the permeability of endothelium by down-regulation of tight junction in a dose- and time-dependence manner, but was not by integrins induced focal adhesions. This finding reveals the molecular mechanism in the increase of endothelial cell permeability induced by IL-8, which is expected to provide a new idea as a therapeutic target in vascular diseases.  相似文献   
975.
The ergosterol biosynthesis pathway is well understood in Saccharomyces cerevisiae, but currently little is known about the pathway in plant‐pathogenic fungi. In this study, we characterized the Fusarium graminearum FgERG4 gene encoding sterol C‐24 reductase, which catalyses the conversion of ergosta‐5,7,22,24‐tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4 deletion mutant ΔFgErg4‐2 failed to synthesize ergosterol. The mutant exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of ΔFgErg4‐2 revealed increased resistance to cell wall‐degrading enzymes. Fungicide sensitivity tests revealed that ΔFgErg4‐2 showed increased resistance to various sterol biosynthesis inhibitors (SBIs), which is consistent with the over‐expression of SBI target genes in the mutant. ΔFgErg4‐2 was impaired dramatically in virulence, although it was able to successfully colonize flowering wheat head and tomato, which is in agreement with the observation that the mutant produces a significantly lower level of trichothecene mycotoxins than does the wild‐type progenitor. All of these phenotypic defects of ΔFgErg4‐2 were complemented by the reintroduction of a full‐length FgERG4 gene. In addition, FgERG4 partially rescued the defect of ergosterol biosynthesis in the Saccharomyces cerevisiae ERG4 deletion mutant. Taken together, the results of this study indicate that FgERG4 plays a crucial role in ergosterol biosynthesis, vegetative differentiation and virulence in the filamentous fungus F. graminearum.  相似文献   
976.
Background aimsThe potential protective effects of mesenchymal stromal cells (MSCs) on some kidney diseases has been reported. However, the effect of MSCs on doxorubicin-induced nephropathy is still poorly understood.MethodsRats with doxorubicin-induced kidney injuries were treated with human cord-derived MSCs. Human MSCs were first labeled with 5-bromo-2′-deoxyuridine to track their homing in kidneys after infusion.ResultsAlleviation of proteinuria, decreased serum albumin, alleviation of lipid disorders and histologic alterations were found in rats 4 weeks after treatment with MSCs, particularly in rats that were given repeat doses. Decreases in serum levels of interleukin-6, tumor necrosis factor-α and prostaglandin E2 and decreases in messenger RNA levels of kidney tissue cylooxygenase-2 and EP4 were found in MSC-treated rats. MSC-treated rats also displayed an increase in serum interleukin-10 levels.ConclusionsThese results indicate that MSCs ameliorate doxorubicin-induced kidney injuries and inflammation, suggesting a potential clinical treatment for inflammatory kidney diseases.  相似文献   
977.
Background aimsToll-like receptors (TLRs) play an important role in innate and adaptive immunity by recognizing pathogen-associated molecular patterns (PAMPs).MethodsIn the present study, we investigated the expression and role of TLRs on human umbilical cord mesenchymal stromal cells (UC-MSCs). The proliferation, differentiation and immunoregulatory activity of UC-MSCs primed with or without TLR ligands were determined.ResultsAt the RNA level, the expression of TLR2, 4, 6 and 9 was relatively higher than that of other TLRs. However, TLR3 and TLR4 expression were relatively higher at the protein level. UC-MSCs expressed functional TLRs by nuclear factor-κB activation and cytokine expression assay. Poly-inosinic acid:cytidylic acid [Poly(I:C)] stimulation inhibited the proliferation of UC-MSCs, but the ligand of other TLRs had no significant effect. Poly(I:C) stimulation enhanced the adipogenic differentiation capability of UC-MSCs, but lipopolysaccharide inhibited the adipogenic differentiation. Poly(I:C) and CpG-oligonucleotide promoted the immunosuppressive potentiality of UC-MSCs, accompanied with the phosphorylation of interferon regulatory factor 3 (IRF3) and increased expression of indoleamine 2,3-dioxygenase and interferon β, whereas activation of other TLR ligands (synthetic analog fibroblast-stimulating lipopeptide-1 and lipopolysaccharide) failed to affect the immunoregulatory activity of UC-MSCs.ConclusionsTaken together, our data demonstrated that TLR activation influenced the function of UC-MSCs, which might have important implications in future efforts to explore the clinical potentials of UC-MSCs.  相似文献   
978.
979.
Preterm birth is the single biggest cause of significant neonatal morbidity and mortality, and the incidence is rising. Development of new therapies to treat and prevent preterm labour is seriously hampered by incomplete understanding of the molecular mechanisms that initiate labour at term and preterm. Computational modelling provides a new opportunity to improve this understanding. It is a useful tool in (i) identifying gaps in knowledge and informing future research, and (ii) providing the basis for an in silico model of parturition in which novel drugs to prevent or treat preterm labour can be “tested”. Despite their merits, computational models are rarely used to study the molecular events initiating labour. Here, we present the first attempt to generate a dynamic kinetic model that has relevance to the molecular mechanisms of preterm labour. Using published data, we model an important candidate signalling pathway in infection-induced preterm labour: that of lipopolysaccharide (LPS) -induced activation of Nuclear Factor kappa B. This is the first model of this pathway to explicitly include molecular interactions upstream of Nuclear Factor kappa B activation. We produced a formalised graphical depiction of the pathway and built a kinetic model based on ordinary differential equations. The kinetic model accurately reproduced published in vitro time course plots of Lipopolysaccharide-induced Nuclear Factor kappa B activation in mouse embryo fibroblasts. In this preliminary work we have provided proof of concept that it is possible to build computational models of signalling pathways that are relevant to the regulation of labour, and suggest that models that are validated with wet-lab experiments have the potential to greatly benefit the field.  相似文献   
980.

Background

The fibroblast growth factor 19 (FGF19) has been implicated in recent studies as a potential regulator of glucose and lipid metabolism, which may lead to atherosclerosis. Here, we investigated the association of FGF19 with the presence and severity of coronary artery disease (CAD) in a Chinese population.

Methods

A total of 315 patients with suspected or established CAD, including 205 males and 110 postmenopausal females, were enrolled and assessed by coronary angiography. CAD severity was determined by the Gensini score. Serum FGF19 was measured by quantitative sandwich ELISA.

Results

FGF19 levels were not significantly different between male and female patients (median [interquartile range], 143.40 [87.96–250.80] vs. 141.60 [87.13–226.32] pg/mL, P = 0.773). CAD patients had lower levels of FGF19 than those without CAD (128.20 [80.62–226.58] vs. 188.00 [105.10–284.70] pg/mL, P = 0.007). FGF19 was negatively correlated with 2hPG (r = –0.150, P = 0.008), FINS (r = –0.169, P = 0.004), HOMA-IR (r = –0.171, P = 0.004), and the Gensini score (r = –0.141, P = 0.012), but positively correlated with HDL-c (r = 0.116, P = 0.041) and adiponectin (r = 0.128, P = 0.024). Moreover, FGF19 was found to be independently correlated with 2hPG (β = –0.146, P = 0.022) and adiponectin (β = 0.154, P = 0.016). After adjusting for other CAD risk factors, FGF19 was demonstrated to be an independent factor for Gensini score (β = –0.140, P = 0.019) and the presence of CAD (β = –1.248, P = 0.036).

Conclusions

Serum FGF19 is associated with the presence and severity of CAD in a Chinese population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号