首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61924篇
  免费   17906篇
  国内免费   3454篇
  2024年   74篇
  2023年   422篇
  2022年   1077篇
  2021年   2193篇
  2020年   3265篇
  2019年   5114篇
  2018年   5181篇
  2017年   5126篇
  2016年   5623篇
  2015年   6177篇
  2014年   6407篇
  2013年   6988篇
  2012年   5161篇
  2011年   4548篇
  2010年   4949篇
  2009年   3472篇
  2008年   2639篇
  2007年   2028篇
  2006年   1763篇
  2005年   1672篇
  2004年   1456篇
  2003年   1369篇
  2002年   1189篇
  2001年   913篇
  2000年   756篇
  1999年   702篇
  1998年   411篇
  1997年   349篇
  1996年   315篇
  1995年   248篇
  1994年   238篇
  1993年   176篇
  1992年   222篇
  1991年   205篇
  1990年   134篇
  1989年   140篇
  1988年   110篇
  1987年   82篇
  1986年   47篇
  1985年   64篇
  1984年   44篇
  1983年   46篇
  1982年   30篇
  1981年   23篇
  1980年   15篇
  1979年   27篇
  1978年   11篇
  1976年   9篇
  1973年   10篇
  1972年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Detection of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a crucial tool for fighting the COVID‐19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS‐CoV‐2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data‐dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass‐spectrometry method development and diagnostic of the new SARS‐CoV‐2 is proposed and the best candidates are commented.  相似文献   
912.
913.
914.
915.
Targeted proteomics depends on the availability of stable isotope labeled (SIL) peptide standards, which for absolute protein quantification need to be absolutely quantified. In the present study, three new approaches for absolute quantification of SIL peptides are developed. All approaches rely on a quantification tag (Qtag) with a specific UV absorption. The Qtag is attached to the peptide during synthesis and is removed by tryptic digestion under standard proteomics workflow conditions. While one quantification method (method A) is designed to allow the fast and economic production of absolutely quantified SIL peptides, two other methods (methods B and C) are developed to enable the straightforward re‐quantification of SIL peptides after reconstitution to control and monitor known problems related to peptide solubility, precipitation, and adhesion to vials. All methods yield consistent results when compared to each other and when compared to quantification by amino acid analysis. The precise quantitation methods are used to characterize the in vivo specificity of the H3 specific histone methyltransferase EZH2.  相似文献   
916.
A large number of post‐translational modifications (PTMs) in proteins are buried in the unassigned mass spectrometric (MS) spectra in shot‐gun proteomics datasets. Because the modified peptide fragments are low in abundance relative to the corresponding non‐modified versions, it is critical to develop tools that allow facile evaluation of assignment of PTMs based on the MS/MS spectra. Such tools will preferably have the ability to allow comparison of fragment ion spectra and retention time between the modified and unmodified peptide pairs or group. Herein, MMS2plot, an R package for visualizing peptide‐spectrum matches (PSMs) for multiple peptides, is described. MMS2plot features a batch mode and generates the output images in vector graphics file format that facilitate evaluation and publication of the PSM assignment. MMS2plot is expected to play an important role in PTM discovery from large‐scale proteomics datasets generated by liquid chromatography‐MS/MS. The MMS2plot package is freely available at https://github.com/lileir/MMS2plot under the GPL‐3 license.  相似文献   
917.
This study identifies the main changes in protein expression in human breast tumors compared to normal breast tissue. Malignant tumors (32) and normal breast tissue samples (23), from formaldehyde‐fixed, paraffin‐embedded specimens are subjected to discovery proteomics using liquid chromatography/tandem mass spectrometry, with spectral counts for quantitation. The dataset contains 1406 proteins. Differential expression is measured using a method that takes advantage of estimates of the percentage of tumor on a slide. This analysis shows that the major classes of proteins over‐expressed by tumors are RNA‐binding, heat shock and DNA repair proteins. RNA‐binding proteins, including heterogeneous nuclear ribonucleoproteins (HNRNPs), SR splice factors (SRSF) and elongation factors form the largest group. Comparison with results from another study demonstrates that the RNA‐binding proteins are associated specifically with malignant transformation, rather than with cell proliferation. HNRNP and SRSF proteins help define splice sites in normal cells. Their over‐expression may dysregulate splicing, which in turn has the potential to promote malignant transformation.  相似文献   
918.
Next‐generation sequencing has enabled genetic and genomic characterization of melanoma to an unprecedent depth. However, the high mutational background plus the limited depth of coverage of whole‐genome sequencing performed on cutaneous melanoma samples make the identification of novel driver mutations difficult. We sought to explore the somatic mutation portfolio in exonic and gene regulatory regions in human melanoma samples, for which we performed targeted sequencing of tumors and matched germline DNA samples from 89 melanoma patients, identifying known and novel recurrent mutations. Two recurrent mutations found in the RPS27 promoter associated with decreased RPS27 mRNA levels in vitro. Data mining and IHC analyses revealed a bimodal pattern of RPS27 expression in melanoma, with RPS27‐low patients displaying worse prognosis. In vitro characterization of RPS27‐high and RPS27‐low melanoma cell lines, as well as loss‐of‐function experiments, demonstrated that high RPS27 status provides increased proliferative and invasive capacities, while low RPS27 confers survival advantage in low attachment and resistance to therapy. Additionally, we demonstrate that 10 other cancer types harbor bimodal RPS27 expression, and in those, similarly to melanoma, RPS27‐low expression associates with worse clinical outcomes. RPS27 promoter mutation could thus represent a mechanism of gene expression modulation in melanoma patients, which may have prognostic and predictive implications.  相似文献   
919.
Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF‐2 and keratin 5. In vitro analysis confirmed that FGF‐2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling–Degos Disease (DDD) have already been associated with the pheomelanosome–eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age‐related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders.  相似文献   
920.
The rice stem borer, Chilo suppressalis, is one of the most damaging insect pests to rice production worldwide. Although C. suppressalis has been the focus of numerous studies examining cold tolerance and diapause, plant–insect interactions, pesticide targets and resistance, and the development of RNAi‐mediated pest management, the absence of a high‐quality genome has limited deeper insights. To address this limitation, we generated a draft C. suppressalis genome constructed from both Illumina and PacBio sequences. The assembled genome size was 824.35 Mb with a contig N50 of 307 kb and a scaffold N50 of 1.75 Mb. Hi‐C scaffolding assigned 99.2% of the bases to one of 29 chromosomes. Based on universal single‐copy orthologues (BUSCO), the draft genome assembly was estimated to be 97% complete and is predicted to encompass 15,653 protein‐coding genes. Cold tolerance is an extreme survival strategy found in animals. However, little is known regarding the genetic basis of the winter ecology of C. suppressalis. Here, we focused our orthologous analysis on those gene families associated with animal cold tolerance. Our finding provided the first genomic evidence revealing specific cold‐tolerant strategies in C. suppressalis, including those involved in glucose‐originated glycerol biosynthesis, triacylglycerol‐originated glycerol biosynthesis, fatty acid synthesis and trehalose transport‐intermediate cold tolerance. The high‐quality C. suppressalis genome provides a valuable resource for research into a broad range of areas in molecular ecology, and subsequently benefits developing modern pest control strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号