首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   997篇
  免费   76篇
  2023年   6篇
  2022年   12篇
  2021年   21篇
  2020年   9篇
  2019年   18篇
  2018年   15篇
  2017年   31篇
  2016年   31篇
  2015年   51篇
  2014年   55篇
  2013年   68篇
  2012年   86篇
  2011年   83篇
  2010年   54篇
  2009年   44篇
  2008年   61篇
  2007年   57篇
  2006年   50篇
  2005年   49篇
  2004年   62篇
  2003年   53篇
  2002年   44篇
  2001年   20篇
  2000年   3篇
  1999年   13篇
  1998年   10篇
  1997年   11篇
  1996年   7篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1968年   1篇
  1940年   1篇
  1936年   1篇
  1931年   1篇
  1912年   2篇
  1908年   1篇
排序方式: 共有1073条查询结果,搜索用时 62 毫秒
151.
Neurofibromatosis type 1 (NF1) is one of the most common human hereditary disorders, predisposing individuals to the development of benign and malignant tumors in the nervous system, as well as other clinical manifestations. NF1 is caused by heterozygous mutations in the NF1 gene and around 25% of the pathogenic changes affect pre-mRNA splicing. Since the molecular mechanisms affected by these mutations are poorly understood, we have analyzed the splicing mutations identified in exon 9 of NF1, which is particularly prone to such changes, to better define the possible splicing regulatory elements. Using a minigene approach, we studied the effect of five splicing mutations in this exon described in patients. These highlighted three regulatory motifs within the exon. An in vivo splicing analysis of an extensive collection of changes generated in the minigene demonstrated that the CG motif at c.910-911 is critical for the recognition of exon 9. We also found that the GC motif at c.945-946 is involved in exon recognition through SRSF2 and that this motif is part of a Composite Exon Splicing Regulatory Element made up of physically overlapping enhancer and silencer elements. Finally, through an in vivo splicing analysis and in vitro binding assays, we demonstrated that the c.1007G>A mutation creates an Exonic Splicing Silencer element that binds the hnRNPA1 protein. The complexity of the splicing regulatory elements present in exon 9 is most likely responsible for the fact that mutations in this region represent 25% of all exonic changes that affect splicing in the NF1 gene.  相似文献   
152.
153.
154.
Free-ranging marine predators rarely search for prey along straight lines because dynamic ocean processes usually require complex search strategies. If linear movement patterns occur they are usually associated with travelling events or migratory behaviour. However, recent fine scale tracking of flying seabirds has revealed straight-line movements while birds followed fishing vessels. Unlike flying seabirds, penguins are not known to target and follow fishing vessels. Yet yellow-eyed penguins from New Zealand often exhibit directed movement patterns while searching for prey at the seafloor, a behaviour that seems to contradict common movement ecology theories. While deploying GPS dive loggers on yellow-eyed penguins from the Otago Peninsula we found that the birds frequently followed straight lines for several kilometres with little horizontal deviation. In several cases individuals swam up and down the same line, while some of the lines were followed by more than one individual. Using a remote operated vehicle (ROV) we found a highly visible furrow on the seafloor most likely caused by an otter board of a demersal fish trawl, which ran in a straight line exactly matching the trajectory of a recent line identified from penguin tracks. We noted high abundances of benthic scavengers associated with fisheries-related bottom disturbance. While our data demonstrate the acute way-finding capabilities of benthic foraging yellow-eyed penguins, they also highlight how hidden cascading effects of coastal fisheries may alter behaviour and potentially even population dynamics of marine predators, an often overlooked fact in the examination of fisheries’ impacts.  相似文献   
155.
Recent, high-resolution palaeoecological records are changing the traditional picture of post-glacial vegetation succession in the Iberian Peninsula. In addition to the influence of Lateglacial and Early Holocene climatic changes, other factors are critical in the course of vegetation development and we observe strong regional differences. The floristic composition, location and structure of glacial tree populations and communities may have been primary causes of vegetation development. Refugial populations in the Baetic cordilleras would have been a source, but not the only one, for the early Lateglacial oak expansions. From Mid to Late Holocene, inertial, resilient, and rapid responses of vegetation to climatic change are described, and regional differences in the response are stressed. The role of fire, pastoralism, agriculture, and other anthropogenic disturbances (such as mining), during the Copper, Bronze, Iberian, and Roman times, is analysed. The implications of ecological transitions in cultural changes, especially when they occur as societal collapses, are discussed.  相似文献   
156.
157.
The effect of incubation and rearing temperature on muscle development and swimming endurance under a high-intensity swimming test was investigated in juvenile Chinook salmon (Oncorhynchus tshawytscha) in a hatchery experiment. After controlling for the effects of fork length (LF) and parental identity, times to fatigue of fish were higher when fish were incubated or reared at warmer temperatures. Significant differences among combinations of pre- and post-emergence temperatures conformed to 15–15°C > 15–9°C > 9–9°C > 7–9°C > 7–7°C in 2011 when swimming tests were conducted at 300 accumulated temperature units post-emergence and 15–9°C > (7–9°C = 7–7°C) in 2012 when swimming tests were conducted at an LF of c. 40 mm. The combination of pre- and post-emergence temperatures also affected the number and size of muscle fibres, with differences among temperature treatments in mean fibre cross-sectional area persisting after controlling for LF and parental effects. Nonetheless, neither fibre number nor fibre size accounted for significant variation in swimming endurance. Thus, thermal carryover effects on swimming endurance were not mediated by thermal imprinting of muscle structure. This is the first study to test how temperature, body size and muscle structure interact to affect swimming endurance during early development in salmon.  相似文献   
158.
Abstract

Microstructural post mortem changes to skeletal tissues by microorganisms are driven by several factors including the death history of an animal, its decomposition trajectory, and the depositing environment itself. The study we describe here brings together material from recent and fossil contexts that are depositionally distinct from a terrestrial-marine transitionary shoreline environment. We compare these changes with those of marine environments previously identified in the Mary Rose material, and those of continental waters (lakes) previously identified in the Cerro de la Garita (Concud) site, and we document this against bacterially related changes observed from terrestrial contexts. A new microstructural change identified in material from terrestrial sites is also described relating to rootlet damage. By considering microstructural change in skeletal tissues, it is maybe possible to ascribe environmental context, or, to better understand the complexity of material presented by transitionary environments.  相似文献   
159.
Phenotypic variation is the raw material of adaptive Darwinian evolution. The phenotypic variation found in organismal development is biased towards certain phenotypes, but the molecular mechanisms behind such biases are still poorly understood. Gene regulatory networks have been proposed as one cause of constrained phenotypic variation. However, most pertinent evidence is theoretical rather than experimental. Here, we study evolutionary biases in two synthetic gene regulatory circuits expressed in Escherichia coli that produce a gene expression stripe—a pivotal pattern in embryonic development. The two parental circuits produce the same phenotype, but create it through different regulatory mechanisms. We show that mutations cause distinct novel phenotypes in the two networks and use a combination of experimental measurements, mathematical modelling and DNA sequencing to understand why mutations bring forth only some but not other novel gene expression phenotypes. Our results reveal that the regulatory mechanisms of networks restrict the possible phenotypic variation upon mutation. Consequently, seemingly equivalent networks can indeed be distinct in how they constrain the outcome of further evolution.  相似文献   
160.
Host cytosolic proteins are endocytosed by Toxoplasma gondii and degraded in its lysosome‐like compartment, the vacuolar compartment (VAC), but the dynamics and route of endocytic trafficking remain undefined. Conserved endocytic components and plant‐like features suggest T. gondii endocytic trafficking involves transit through early and late endosome‐like compartments (ELCs) and potentially the trans‐Golgi network (TGN) as in plants. However, exocytic trafficking to regulated secretory organelles, micronemes and rhoptries, also proceeds through ELCs and requires classical endocytic components, including a dynamin‐related protein, DrpB. Here, we show that host cytosolic proteins are endocytosed within 7 minutes post‐invasion, trafficked through ELCs en route to the VAC, and degraded within 30 minutes. We could not definitively interpret if ingested protein is trafficked through the TGN. We also found that parasites ingest material from the host cytosol throughout the parasite cell cycle. Ingested host proteins colocalize with immature microneme proteins, proM2AP and proMIC5, in transit to the micronemes, but not with the immature rhoptry protein proRON4, indicating that endocytic trafficking of ingested protein intersects with exocytic trafficking of microneme proteins. Finally, we show that conditional expression of a DrpB dominant negative mutant increases T. gondii ingestion of host‐derived proteins, suggesting that DrpB is not required for parasite endocytosis.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号