首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   994篇
  免费   76篇
  2023年   6篇
  2022年   9篇
  2021年   21篇
  2020年   9篇
  2019年   18篇
  2018年   15篇
  2017年   31篇
  2016年   31篇
  2015年   51篇
  2014年   55篇
  2013年   68篇
  2012年   86篇
  2011年   83篇
  2010年   54篇
  2009年   44篇
  2008年   61篇
  2007年   57篇
  2006年   50篇
  2005年   49篇
  2004年   62篇
  2003年   53篇
  2002年   44篇
  2001年   20篇
  2000年   3篇
  1999年   13篇
  1998年   10篇
  1997年   11篇
  1996年   7篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1968年   1篇
  1940年   1篇
  1936年   1篇
  1931年   1篇
  1912年   2篇
  1908年   1篇
排序方式: 共有1070条查询结果,搜索用时 15 毫秒
111.
The C-terminal portion of the Plasmodium falciparum blood stage MSP-1 antigen plays a key role in invasion of human erythrocytes. The MSP-1(1282-1301) non-polymorphic 1585 peptide, from the processed MSP-1(42) fragment, is poorly immunogenic and highly alpha-helical [Angew. Chem. Int. Ed. 40 (2001) 4654]. Assessing the alpha-carbon asymmetry and its implication in the host immune response is proposed in this work to overcome the 1585 peptide's immunological properties. Accordingly, the effect of incorporating single D-amino acids and psi-[CH(2)-NH] isoster bonds into the 1585 peptide was examined both at the immunogenic and 3D-structure levels. Therefore, specific binding to RBCs is promoted by site-directed chiral modifications on the native peptide as well as by simultaneously combining specific D-substitutions with psi-[CH(2)-NH] isoster bonds transforming this molecule into a high specific HLAbeta1*1101 allele binder. D-analog pseudopeptide immunized animals induced antibodies selectively recognizing a recombinant as well as native MSP-1(42) and MSP-1(33) fragments. Protection and low parasitemia levels were induced in Aotus monkeys immunized with the EVLYL(dK)PLAGVYRSLKKQLE analog. Peptide alpha-carbon chiral transformation is therefore an important target for structural modulation and, consequently, represents a novel approach towards designing multi-component subunit-based malarial vaccines.  相似文献   
112.
The search for a rational method of developing an antimalarial vaccine (malaria caused by Plasmodium falciparum) consists of blocking receptor-ligand interaction. Conserved peptides derived from proteins involved in invasion and having strong red blood cell binding ability have thus been identified; immunization studies using Aotus monkeys revealed that these peptides were neither immunogenic nor protection-inducing. Some of these peptides induced long-lasting and very high antibody titers and protection when their critical red blood cell binding residues were replaced to change their immunological properties. Others induced short-lived antibodies that were not associated with inducing protection. The three-dimensional structure of the short-lived antibody-inducing peptide was determined by (1)H NMR. Their HLA-DRbeta1* molecule binding ability was also determined to ascertain the relationship among three-dimensional structure, their ability to bind to major histocompatibility complex class II molecules (MHC II), and possible short-lived antibody production. These short-lived antibody-inducing peptides were 6.8 +/- 0.5 A shorter between those residues theoretically coming into contact with pocket 1 and pocket 9 of HLA-DRbeta1* molecules to which they bind than immunogenic and protection-inducing peptides. These more compact alpha-helical structures suggest that these short-lived antibody-inducing peptides could have a structure more similar to those of native peptides than immunogenic and protective ones. Such shortening was associated with a shift in HLA-DRbeta1* molecule binding and a consequent shift in functional register reading, mainly by alleles of the same haplotype when compared with immunogenic protection-inducing HABPs, suggesting an imperfect and different conformation of the MHC II peptide-TCR complex.  相似文献   
113.
The dramatically increased frequency of antibiotic resistance has led to intensive efforts towards developing new families of antibiotics. Membrane-active antibiotic peptides such as polymyxin B (PxB) hold promise as the next generation of antibiotics, since they rarely spur the evolution of resistance. At low concentrations in the membrane, PxB forms vesicle-vesicle contacts and induces lipid exchange without leakage or fusion, a phenomenon that can explain its specificity towards gram-negative bacteria by contact formation between the two phospholipids interfaces in the periplasmatic space. In this work, the interaction of PxB and the nonantibiotic derivative polymyxin B nonapeptide (PxB-NP) with monolayers of Escherichia coli membrane lipids (ECL) has been studied by thermodynamic and structural methods. PxB inserts itself into ECL monolayers as a conformation that forms intermembrane contacts with vesicles injected underneath, and induces lipid exchange when the monolayer surface pressure is set at 32 mN/m (membrane equivalence pressure) or net transfer vesicle-to-monolayer at lower surface pressures. Thermodynamic analysis of the compression isotherms of mixed monolayers indicates that PxB inserts into the monolayer with an expansion of the mean molecular area, implying that peptide and lipids form nonideal mixtures. At low concentrations, corresponding to the membrane-membrane contact form of PxB, the mixed monolayers present positive excess energy values (deltaGm(Ex)), and atomic force microscopy (AFM) imaging reveals structures of approximately 120-nm diameter that protrude from the lipid surface approximately 0.7 nm. At concentrations of PxB above 4 mol %, thermodynamic analysis gives a very high deltaGm(Ex), corresponding to nonfavorable interactions, and AFM images show round structures of 20-30 nm diameter. PxB-NP behaves in a totally different way, in agreement with its inability to form vesicle-vesicle contacts and its lack of antibiotic effect. These results are discussed in the light of the mechanism of action of PxB on the membrane of gram-negative bacteria.  相似文献   
114.
Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. Two P. aeruginosa phenotypes relevant in human disease include motility and mucoidy. Motility is characterized by the presence of flagella and is essential in the establishment of acute infections, while mucoidy, defined by the production of the exopolysaccharide alginate, is critical in the development of chronic infections, such as the infections seen in cystic fibrosis patients. Indeed, chronic infection of the lung by mucoid P. aeruginosa is a major cause of morbidity and mortality in cystic fibrosis patients. We have used Calu-3 human airway epithelial cells to investigate global responses to infection with motile and mucoid P. aeruginosa. The response of airway epithelial cells to exposure to P. aeruginosa motile strains is characterized by a specific increase in gene expression in pathways controlling inflammation and host defense. By contrast, the response of airway epithelia to the stimuli presented by mucoid P. aeruginosa is not proinflammatory and, hence, may not be conducive to the effective elimination of the pathogen. The pattern of gene expression directed by flagellin, but not alginate, includes innate host defense genes, proinflammatory cytokines, and chemokines. By contrast, infection with alginate-producing P. aeruginosa results in an overall attenuation of host responses and an antiapoptotic effect.  相似文献   
115.
Selection on uterine capacity has been used in animal breeding as a way to improve the litter size. A divergent selection experiment for uterine capacity was performed in rabbits during ten generations. After the first generations of selection, large differences in number of implanted embryos were obtained between high and low lines. The major part of the differences between lines was due to embryo survival. A segregation analysis suggested the presence of a major gene affecting the reproductive traits. The objective of this work was to test the TIMP-1 gene as a candidate gene for embryo survival in rabbits since it stands up as a target for the investigation of reproductive problems in humans. We have analyzed the parental generation of a F2 cross which consists of 8 and 14 animals from the high and low uterine capacity lines, respectively. The rabbit TIMP-1 gene structure and sequence has been determined, including the proximal promoter region. Despite of the absence of polymorphism between lines in the screened regions (CDS, proximal promoter, exon 1, intron 1, and exon 2), a real-time RT-PCR quantification of the TIMP-1 mRNA in oviduct has shown significant differences between high and low lines at 62 hr of gestation, just when rabbit embryos are located in the oviduct, postulating TIMP-1 as an interesting candidate gene to be involved in the phenotypic differences between the two rabbit lines.  相似文献   
116.
A series of 1H-benzo[d]imidazole analogues of Pimobendan, substituted at position 5 with either –CF3 or –NO2, were synthesized using a short synthetic route. All the nitro derivatives were potent, and exhibited a concentration- and partial endothelium-dependent vasorelaxant effects, with EC50s <5 μM. 2-Methoxy-4-[5-nitro-1H-benzo[d]imidazol-2-yl]phenol (compound 13) was the most potent derivative of the series, showing an EC50 value of 1.81 μM and Emax of 91.7% for ex vivo relaxant response in intact aortic rings, resulting in a 2.5-fold higher activity compared to Pimobendan. The closely related 5-CF3 analogue (compound 8), was 19 times less potent than 13. The antihypertensive activity of compound 13 was evaluated at doses of 25, 50 and 100 mg kg?1, using spontaneously hypertensive rats (SHR), showing a statistically significant dose-dependent effect.  相似文献   
117.
118.
119.
120.
Myeloid leukocytes are the first line of host defence. When they sense perturbations in tissue homeostasis such as infection, inflammation and ischemia, they respond by trafficking. Whilst neutrophils and macrophages migrate to sites of infection, dendritic cells (DC) migrate from tissue-resident sites back into lymph nodes where they activate T and B lymphocytes. The directed migration of these leukocytes through peripheral tissues is thus crucial for their function. This article considers recent advances in our understanding of the adhesive and motile behaviour of macrophages and DC, with particular emphasis on the podosomes that appear to be required for normal migration through extracellular matrices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号