首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1249篇
  免费   101篇
  2023年   11篇
  2022年   13篇
  2021年   26篇
  2020年   15篇
  2019年   26篇
  2018年   31篇
  2017年   36篇
  2016年   41篇
  2015年   57篇
  2014年   71篇
  2013年   80篇
  2012年   100篇
  2011年   104篇
  2010年   60篇
  2009年   50篇
  2008年   73篇
  2007年   67篇
  2006年   69篇
  2005年   56篇
  2004年   67篇
  2003年   66篇
  2002年   55篇
  2001年   28篇
  2000年   11篇
  1999年   14篇
  1998年   12篇
  1997年   19篇
  1996年   10篇
  1995年   11篇
  1994年   7篇
  1993年   8篇
  1992年   3篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1978年   2篇
  1977年   3篇
  1974年   1篇
  1968年   4篇
  1967年   1篇
  1966年   2篇
  1953年   1篇
  1931年   1篇
排序方式: 共有1350条查询结果,搜索用时 15 毫秒
81.
82.
This study was conducted to identify and map the quantitative trait locus (QTL) controlling Al tolerance in rice using molecular markers. A population of 171 F(6) recombinant inbred lines (RILs) derived from the cross of Oryza sativa (IR64), the Al susceptible parent, and Oryza rufipogon, the Al tolerant parent, was evaluated for Al tolerance using a nutrient solution with and without 40 ppm of active Al(+3). A genetic map, consisting of 151 molecular markers covering 1,755 cM with an average distance of 11.6 cM between loci, was constructed. Nine QTLs were dentified including one for root length under non-stress conditions (CRL), three for root length under Al stress (SRL) and five for relative root length (RRL). O. rufipogon contributed favorable alleles for each of the five QTLs for RRL, which is a primary parameter for Al tolerance, and individually they explained 9.0-24.9% of the phenotypic variation. Epistatic analysis revealed that CRL was conditioned by an epistatic effect, whereas SRL and RRL were controlled by additive effects. Comparative genetic analysis showed that QTLs for RRL, which mapped on chromosomes 1 and 9, appear to be consistent among different rice populations. Interestingly, a major QTL for RRL, which explained 24.9% of the phenotypic variation, was found on chromosome 3 of rice, which is conserved across cereal species. These results indicate the possibilities to use marker-assisted selection and pyramiding QTLs for enhancing Al tolerance in rice. Positional cloning of such QTLs introgressed from O. rufipogon will provide a better understanding of the Al tolerance mechanism in rice and the evolutionary genetics of plant adaptation to acid-soil conditions across cereal species.  相似文献   
83.
A prolyl aminopeptidase (PAP) (EC 3.4.11.5) was isolated from the cell extract of Debaryomyces hansenii CECT12487. The enzyme was purified by selective fractionation with protamine and ammonium sulfate, followed by two chromatography steps, which included gel filtration and anion-exchange chromatography. The PAP was purified 248-fold, with a recovery yield of 1.4%. The enzyme was active in a broad pH range (from 5 to 9.5), with pH and temperature optima at 7.5 and 45 degrees C. The molecular mass was estimated to be around 370 kDa. The presence of inhibitors of serine and aspartic proteases, bestatin, puromycin, reducing agents, chelating agents, and different cations did not have any effect on the enzyme activity. Only iodoacetate, p-chloromercuribenzoic acid, and Hg(2+), which are inhibitors of cysteine proteases, markedly reduced the enzyme activity. The K(m) for proline-7-amido-4-methylcoumarin was 40 micro M. The enzyme exclusively hydrolyzed N-terminal-proline-containing substrates. This is the first report on the identification and purification of this type of aminopeptidase in yeast, which may contribute to the scarce knowledge about D. hansenii proteases and their possible roles in meat fermentation.  相似文献   
84.
The propensity of malignant gliomas to invade surrounding brain tissue contributes to poor clinical outcome. Integrin-mediated adhesion to extracellular matrix regulates the migration and proliferation of many cell types, but its role in glioma progression is undefined. We investigated the role of the cytoplasmic tyrosine kinases FAK and Pyk2, potential integrin effectors, in the phenotypic determination of four different human glioblastoma cell lines. While FAK expression was similar between the four cell lines, increased FAK activity correlated with high proliferation and low migratory rates. In contrast, Pyk2 activity was significantly increased in migratory cell lines and depressed in proliferative cell lines. Overexpression of Pyk2 stimulated migration, whereas FAK overexpression inhibited cell migration and stimulated cellular proliferation. These data suggest that FAK and Pyk2 function as important signaling effectors in gliomas and indicate that their differential regulation may be determining factors in the temporal development of proliferative or migrational phenotypes.  相似文献   
85.
Glioblastoma (GBM) remains one of the most challenging solid cancers to treat due to its highly proliferative, angiogenic and invasive nature. The small molecule CDK inhibitor, flavopiridol, has demonstrated antitumor activity in human xenograft models and is currently in clinical trials showing efficacy in patients with advanced disease. We have developed an experimental animal model using the murine glioma GL261 cells as a novel in vivo system to screen potential therapeutic agents for GBM. Results of in vitro testing demonstrate that flavopiridol has several relevant clinical characteristics such as its ability to: 1. inhibit cell growth; 2. inhibit cell migration; 3. decrease expression of cyclin D1, CDK4 and p21; 4. induce apoptosis in cells with high levels of p27 expression; and 5. decrease the expression of the anti-apoptotic protein Bcl-2. The mechanism by which flavopiridol induces apoptosis is mitochondrial-mediated. We demonstrate by electron microscopy and immunohistochemistry that drug treatment induces mitochondrial damage that was accompanied by the release of cytochrome c into the cytosol together with the translocation of apoptosis inducing factor (AIF) into the nucleus. This finding in murine glioma cells differs from the mechanism of flavopiridolinduced cell death reported by us for human glioma cells (Alonso et al., Mol Cancer Ther 2003; 2:139) where drug treatment induced a caspase- and cytochrome c-independent pathway in the absence of detectable damage to mitochondria. In apoptotic human glioma cells only translocation of AIF into the nucleus occurred. Thus, the same drug kills different types of glioma cells by different mitochondrial-dependent pathways.  相似文献   
86.
87.
The cytokine interleukin (IL)-6 can increase markedly in the circulation during exercise, but whether the liver is a source of this increase is unknown. The aim of this study was to measure IL-6 flux across the hepatosplanchnic tissues in humans. To elevate systemic concentrations of IL-6, six healthy male subjects performed 120 min of semirecumbent cycling, and blood samples were simultaneously obtained from a brachial artery and the hepatic vein before and during exercise for the analysis of IL-6. Hepatosplanchnic blood flow (HBF) was measured using the indocyanine green infusion technique. Net hepatosplanchnic IL-6 balance was calculated from these measures. HBF was 1.3 +/- 0.1 l/min at rest and was not reduced throughout exercise, averaging 1.1 +/- 0.2 l/min. Arterial plasma IL-6 markedly increased (P < 0.05) from 1.8 +/- 0.6 ng/l at rest to 14.3 +/- 3.2 ng/l after 120 min of exercise. The hepatosplanchnic viscera did not contribute to this increase, since there was a net hepatosplanchnic IL-6 uptake (0.8 +/- 0.3 vs. 5.5 +/- 1.9 ng/min, rest vs. 120 min; P < 0.05). These data demonstrate that the hepatosplanchnic viscera remove IL-6 from the circulation in humans. This removal may constitute a mechanism limiting the negative chronic metabolic action of chronically elevated circulating IL-6.  相似文献   
88.
Necrotizing enterocolitis (NEC) is a common and devastating gastrointestinal disease of premature infants. Along with pathological effects in the ileum, severe NEC is often accompanied by multisystem organ failure, including liver failure. The aim of this study was to determine the changes in hepatic cytokines and inflammatory mediators in experimental NEC. The well-established neonatal rat model of NEC was used in this study, and changes in liver morphology, numbers of Kupffer cells (KC), gene expression, and histological localization of IL-18, TNF-alpha, and inducible nitric oxide synthase were evaluated. Intestinal luminal TNF-alpha levels were also measured. Production of hepatic IL-18 and TNF-alpha and numbers of KC were increased in rats with NEC and correlated with the progression of intestinal damage during NEC development. Furthermore, increased levels of TNF-alpha in the intestinal lumen of rats with NEC was significantly decreased when KC were inhibited with gadolinium chloride. These results suggest an important role of the liver and the gut-liver axis in NEC pathogenesis.  相似文献   
89.
90.
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号