首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3179篇
  免费   203篇
  2022年   7篇
  2021年   19篇
  2020年   10篇
  2019年   15篇
  2018年   17篇
  2017年   27篇
  2016年   30篇
  2015年   82篇
  2014年   91篇
  2013年   137篇
  2012年   161篇
  2011年   183篇
  2010年   110篇
  2009年   119篇
  2008年   206篇
  2007年   214篇
  2006年   194篇
  2005年   198篇
  2004年   200篇
  2003年   180篇
  2002年   137篇
  2001年   124篇
  2000年   112篇
  1999年   89篇
  1998年   32篇
  1997年   26篇
  1996年   28篇
  1995年   25篇
  1994年   31篇
  1993年   20篇
  1992年   62篇
  1991年   55篇
  1990年   60篇
  1989年   47篇
  1988年   35篇
  1987年   34篇
  1986年   28篇
  1985年   29篇
  1984年   26篇
  1983年   32篇
  1982年   16篇
  1981年   12篇
  1980年   13篇
  1979年   21篇
  1978年   12篇
  1977年   15篇
  1976年   10篇
  1975年   8篇
  1974年   9篇
  1971年   8篇
排序方式: 共有3382条查询结果,搜索用时 15 毫秒
181.
X-linked dominant chondrodysplasia punctata (CDPX2) is a skeletal dysplasia characterized by stippled epiphyses, cataracts, alopecia and skin lesions, including ichthyosis. CDPX2 exhibits a number of perplexing clinical features, such as intra- and inter-familial variation, anticipation, incomplete penetrance and possible gonadal and somatic mosaicism. Recently, mutations in the gene encoding Delta8,Delta7 sterol isomerase/emopamil-binding protein (EBP) have been identified in CDPX2. To better understand the genetics of CDPX2, we examined the entire EBP gene by direct sequencing in four CDPX2 patients. We found EBP mutations in all four patients, including three novel mutations: IVS3+1G>A, Y165C and W82C. Surprisingly, a known mutation (R147H) was identified in a patient and her clinically unaffected mother. Expression analysis revealed the mutant allele was predominantly expressed in the patient, while both alleles were expressed in the mother. Methylation analysis revealed that the wild-type allele was predominantly inactivated in the patient, while the mutated allele was predominantly inactivated in her mother. Thus, differences in expression of the mutated allele caused by skewed X-chromosome inactivation produced the diverse phenotypes within the family. Our findings could explain some of the perplexing features of CDPX2. The possibility that an apparently normal parent is a carrier should be considered when examining seemingly sporadic cases and providing genetic counseling to CDPX2 families.  相似文献   
182.
Uracil-DNA glycosylase (UDG; EC 3.2.2.-) removes uracil from DNA to initiate DNA base excision repair. Since hydrolytic deamination of cytosine to uracil is one of the most frequent DNA-damaging events in all cells, UDG is an essential enzyme for maintaining the integrity of genomic information. For the first time, we report the crystal structure of a family 4 UDG from Thermus thermophilus HB8 (TthUDG) complexed with uracil, solved at 1.5 angstroms resolution. As opposed to UDG enzymes in its other families, TthUDG possesses a [4Fe-4S] cluster. This iron-sulfur cluster, which is distant from the active site, interacts with loop structures and has been suggested to be unessential to the activity but necessary for stabilizing the loop structures. In addition to the iron-sulfur cluster, salt-bridges and ion pairs on the molecular surface and the presence of proline on loops and turns is thought to contribute to the enzyme's thermostability. Despite very low levels of sequence identity with Escherichia coli and human UDGs (family 1) and E.coli G:T/U mismatch-specific DNA glycosylase (MUG) (family 2), the topology and order of secondary structures of TthUDG are similar to those of these distant relatives. Furthermore, the coordinates of the core structure formed by beta-strands are almost the same. Positive charge is distributed over the active-site groove, where TthUDG would bind DNA strands, as do UDG enzymes in other families. TthUDG recognizes uracil specifically in the same manner as does human UDG (family 1), rather than guanine in the complementary strand DNA, as does E.coli MUG (family 2). These results suggest that the mechanism by which family 4 UDGs remove uracils from DNA is similar to that of family 1 enzymes.  相似文献   
183.
The human Rad51B protein is involved in the recombinational repair of damaged DNA. Chromosomal rearrangements of the Rad51B gene have been found in uterine leiomyoma patients, suggesting that the Rad51B gene suppresses tumorigenesis. In the present study, we found that the purified Rad51B protein bound to single-stranded DNA and double-stranded DNA in the presence of ATP and either Mg(2+) or Mn(2+) and hydrolyzed ATP in a DNA-dependent manner. When the synthetic Holliday junction was present along with the half-cruciform and double-stranded oligonucleotides, the Rad51B protein only bound to the synthetic Holliday junction, which mimics a key intermediate in homologous recombination. In contrast, the human Rad51 protein bound to all three DNA substrates with no obvious preference. Therefore, the Rad51B protein may have a specific function in Holliday junction processing in the homologous recombinational repair pathway in humans.  相似文献   
184.
Takamori K  Hirota S  Chaki S  Tanaka M 《Life sciences》2003,73(13):1721-1728
The present study was designed to investigate the antipsychotic-like effects of selective group II metabotropic glutamate receptor (mGluR) agonists, 5-[2-[4-(6-fluoro-1H-indole-3-yl) piperidin-1-yl]ethyl]-4-(4-fluorophenyl)thiazole-2-carboxylic acid amide (MGS0008) and (1R, 2S, 5S, 6S)-2-amino-6-fluoro-4-oxobicyclo[3.1.0]hexane-2,6-dicarboxylic acid monohydrate (MGS0028) on conditioned avoidance responses in rats. MGS0008 (1, 3 and 10 mg/kg, p.o.) and MGS0028 (0.3, 1 and 3 mg/kg, p.o.) significantly and reduced conditioned avoidance responses in a dose-dependent fashion. Similar effects were seen with LY418426 (0.3, 1 and 3 mg/kg, p.o.), but not with LY354740 (3, 10 and 30 mg/kg, p.o.), both of which are selective agonists for group II mGluR. Since this effect is seen with a wide range of antipsychotics, such as haloperidol and clozapine [Life Sciences 71 (2002) 947], group II mGluR agonists deserve further attention for possible antipsychotic activity.  相似文献   
185.
In this study, the metabolic activation of 2-nitrofluorene (NF) to estrogenic compounds was examined. NF was negative in estrogen reporter assays using estrogen-responsive yeast and human breast cancer cell line MCF-7. However, the compound exhibited estrogenic activity after incubation with liver microsomes of 3-methylcholanthrene-treated rats in the presence of NADPH. Minor estrogenic activity was observed when liver microsomes of untreated or phenobarbital-treated rats were used instead of those from 3-methylcholanthrene-treated rats. When the compound was incubated with the liver microsomes of 3-methylcholanthrene-treated rats in the presence of NADPH, 7-hydroxy-2-nitrofluorene (7-OH-NF) was formed as a major metabolite. However, little of the metabolite was formed by liver microsomes of untreated or phenobarbital-treated rats. Rat recombinant cytochrome P450 1A1 exhibited a significant oxidase activity toward NF, affording 7-OH-NF. Liver microsomes of phenobarbital-treated rats also enhanced oxidase activity toward NF. In this case, 9-hydroxy-2-nitrofluorene was formed. 7-OH-NF exhibited a significant estrogenic activity, while the activity of 9-hydroxy-2-nitrofluorene was much lower. These results suggest that the estrogenic activity of NF was due to formation of the 7-hydroxylated metabolite by liver microsomes.  相似文献   
186.
Spermatogenesis is dependent on a small population of stem cells. Although stem cells are believed to expand infinitely, there is little functional evidence regarding whether spermatogonial stem cells can increase in their number. Using the spermatogonial transplantation technique, we evaluated the proliferative potential of spermatogonial stem cells in two models of regeneration. After busulfan injection to deplete stem cells, the surviving stem cells were able to expand by at least 15.8-fold within 2 mo. On the other hand, a serial transplantation study indicated that one transplanted stem cell was able to expand by 3.8- and 12-fold within 2 and 4 mo, respectively. These results provide direct functional evidence for the expansion of stem cells and establish the basis for further characterization of the stem cell self-renewal process.  相似文献   
187.
Cloning of rat ABCA7 and its preferential expression in platelets   总被引:2,自引:0,他引:2  
We cloned the full-length cDNA of a rat orthologue of ABCA7 (rABCA7) from rat platelets. The cDNA of rABCA7 is 6510bp in length and encodes a protein of 2170 amino acids. The amino acid sequence of rABCA7 exhibits homology to those of mouse ABCA7 (92.5% identical in amino acid sequence) and human ABCA7 (76.6%). We obtained two clones of monoclonal antibodies against rABCA7 recognizing different epitopes. Analysis of CHO cells stably expressing rABCA7 by confocal laser-scanning microscopy indicated that rABCA7 is mainly located in the plasma membrane. Western blot analysis of rat tissues revealed that rABCA7 was preferentially expressed in platelets and that its apparent molecular mass was 250kDa. This is the first report of the tissue distribution of rABCA7 at the protein level and is the first reported case of ABC transporters being expressed in platelets, suggesting their important role in platelet function.  相似文献   
188.
Intracellular delivery of glutathione S-transferase into mammalian cells   总被引:4,自引:0,他引:4  
Protein transduction domains (PTDs) derived from human immunodeficiency virus Tat protein and herpes simplex virus VP22 protein are useful for the delivery of non-membrane-permeating polar or large molecules into living cells. In the course of our study aiming at evaluating PTD, we unexpectedly found that the fluorescent-dye-labeled glutathione S-transferase (GST) from Schistosoma japonicum without known PTDs was delivered into COS7 cells. The intracellular transduction of GST was also observed in HeLa, NIH3T3, and PC12 cells, as well as in hippocampal primary neurons, indicating that a wide range of cell types is permissive for GST transduction. Furthermore, we showed that the immunosuppressive peptide VIVIT fused with GST successfully inhibits NFAT activation. These results suggest that GST is a novel PTD which may be useful in the intracellular delivery of biologically active molecules, such as small-molecule drugs, bioactive peptides, or proteins.  相似文献   
189.
The Escherichia coli SeqA protein, a negative regulator of chromosomal DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated G-mA-T-C sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the functional domains responsible for the DNA-binding and self-association activities, we performed a deletion analysis of the SeqA protein and found that the N-terminal (amino acid residues 1-59) and the C-terminal (amino acid residues 71-181) regions form structurally distinct domains. The N-terminal domain, which is not involved in DNA binding, has the self-association activity. In contrast, the C-terminal domain, which lacks the self-association activity, specifically binds to the hemimethylated G-mA-T-C sequence. Therefore, two essential SeqA activities, self-association and DNA-binding, are independently performed by the structurally distinct N-terminal and C-terminal domains, respectively.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号