首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
  58篇
  2021年   1篇
  2019年   4篇
  2018年   2篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2008年   8篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
41.
Maintenance of energy balance under changeable light conditions is an essential function of photosynthetic organisms to achieve efficient photochemical reactions. Among the photosynthetic organisms, diatoms possess light-harvesting fucoxanthin chlorophyll (Chl) a/c-binding protein (FCP) as peripheral antennas. However, how diatoms regulate excitation-energy distribution between FCP and the two photosystem cores during light adaptation is poorly understood. In this study, we examined spectroscopic properties of a marine diatom Chaetoceros gracilis adapted in the dark and at photosynthetic photon flux density at 30 and 300?μmol?photons?m?2?s?1. Absorption spectra at 77?K showed significant changes in the Soret region, and 77-K steady-state fluorescence spectra showed significant differences in the spectral shape and relative fluorescence intensity originating from both PSII and PSI, among the cells grown under different light conditions. These results suggest alterations of pigment composition and their interactions under the different light conditions. These alterations affected the excitation-energy dynamics monitored by picosecond time-resolved fluorescence analyses at 77?K significantly. The contributions of Chls having lower energy levels than the reaction center Chls in the two photosystems to the energy dynamics were clearly identified in the three cells but with presumably different roles. These findings provide insights into the regulatory mechanism of excitation-energy balance in diatoms under various light conditions.  相似文献   
42.
Peptide YY receptors in the brain   总被引:1,自引:0,他引:1  
Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site.  相似文献   
43.
We designed a cyclic compression system using readily available six-well culture plates to investigate the influence of mechanical stress on skin-like structures. The effects of cyclic mechanical stress on protein expression by cells were easily examined, and hence, this system should be useful for further analysis of skin responses to mechanical stress.  相似文献   
44.
A marine cyanobacterium, Prochlorococcus, is a unique oxygenic photosynthetic organism, which accumulates divinyl chlorophylls instead of the monovinyl chlorophylls. To investigate the molecular environment of pigments after pigment replacement but before optimization of the protein moiety in photosynthetic organisms, we compared the fluorescence properties of the divinyl Chl a-containing cyanobacteria, Prochlorococcus marinus (CCMP 1986, CCMP 2773 and CCMP 1375), by a Synechocystis sp. PCC 6803 (Synechocystis) mutant in which monovinyl Chl a was replaced with divinyl Chl a. P. marinus showed a single fluorescence band for photosystem (PS) II at 687nm at 77K; this was accompanied with change in pigment, because the Synechocystis mutant showed the identical shift. No fluorescence bands corresponding to the PS II 696-nm component and PS I longer-wavelength component were detected in P. marinus, although the presence of the former was suggested using time-resolved fluorescence spectra. Delayed fluorescence (DF) was detected at approximately 688nm with a lifetime of approximately 29ns. In striking contrast, the Synechocystis mutant showed three fluorescence bands at 687, 696, and 727nm, but suppressed DF. These differences in fluorescence behaviors might not only reflect differences in the molecular structure of pigments but also differences in molecular environments of pigments, including pigment-pigment and/or pigment-protein interactions, in the antenna and electron transfer systems.  相似文献   
45.
Niki  Kenta  Aikawa  Shimpei  Yokono  Makio  Kondo  Akihiko  Akimoto  Seiji 《Photosynthesis research》2015,125(1-2):201-210
Photosynthesis Research - Currently, cyanobacteria are regarded as potential biofuel sources. Large-scale cultivation of cyanobacteria in seawater is of particular interest because seawater is a...  相似文献   
46.
Heat shock protein 90 (Hsp90) was co-immunoprecipitated with raptor, the binding partner of the mammalian target of rapamycin (mTOR) from HEK293 cells. Hsp90 was detected in the anti-raptor antibody immunoprecipitates prepared from the cell extract by immunoblot analysis using the anti-Hsp90 antibody, and the association of these two proteins was confirmed by immunoprecipitation from the cells co-expressing Hsp90 and raptor as epitope-tagged molecules. Geldanamycin, a potent inhibitor of Hsp90, disrupted the in vivo binding of Hsp90 to raptor without affecting the association of raptor and mTOR, and suppressed the phosphorylation by mTOR of the downstream translational regulators p70 S6 kinase (S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The protein kinase activity of S6K as well as the phosphorylation of the substrate, 40S ribosomal protein S6, were lowered in the geldanamycin-treated cells. These results indicate that Hsp90 is involved in the regulation of protein translation by facilitating the phosphorylation reaction of 4E-BP1 and S6K catalyzed by the mTOR/raptor complex through the association with raptor, and that the mTOR signaling pathway is a novel target of geldanamycin.  相似文献   
47.
Dynamic reorganization of photosystems I and II is suggested to occur in chloroplast thylakoid membranes to maintain the efficiency of photosynthesis under fluctuating light conditions. To directly observe the process in action, live-cell imaging techniques are necessary. Using live-cell imaging, we have shown that the fine thylakoid structures in the moss Physcomitrella patens are flexible in time. However, the spatiotemporal resolution of a conventional confocal microscopy limits more precise visualization of entire thylakoid structures and understanding of the structural dynamics. Here, we discuss the issues related to observing chlorophyll fluorescence at multiple spatiotemporal scales in vivo and in vitro.  相似文献   
48.
The vast majority of oxygenic photosynthetic organisms use monovinyl chlorophyll for their photosynthetic reactions. For the biosynthesis of this type of chlorophyll, the reduction of the 8-vinyl group that is located on the B-ring of the macrocycle is essential. Previously, we identified the gene encoding 8-vinyl reductase responsible for this reaction in higher plants and termed it DVR. Among the sequenced genomes of cyanobacteria, only several Synechococcus species contain DVR homologues. Therefore, it has been hypothesized that many other cyanobacteria producing monovinyl chlorophyll should contain a vinyl reductase that is unrelated to the higher plant DVR. To identify the cyanobacterial gene that is responsible for monovinyl chlorophyll synthesis, we developed a bioinformatics tool, correlation coefficient calculation tool, which calculates the correlation coefficient between the distributions of a certain phenotype and genes among a group of organisms. The program indicated that the distribution of a gene encoding a putative dehydrogenase protein is best correlated with the distribution of the DVR-less cyanobacteria. We subsequently knocked out the corresponding gene (Slr1923) in Synechocystis sp. PCC6803 and characterized the mutant. The knock-out mutant lost its ability to synthesize monovinyl chlorophyll and accumulated 3,8-divinyl chlorophyll instead. We concluded that Slr1923 encodes the vinyl reductase or a subunit essential for monovinyl chlorophyll synthesis. The function and evolution of 8-vinyl reductase genes are discussed.  相似文献   
49.
In cyanobacteria, the interactions among pigment–protein complexes are modified in response to changes in light conditions. In the present study, we analyzed excitation energy transfer from the phycobilisome and photosystem II to photosystem I in the cyanobacterium Arthrospira (Spirulina) platensis. The cells were grown under lights with different spectral profiles and under different light intensities, and the energy-transfer characteristics were evaluated using steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra. The direct energy transfer from the phycobilisome to photosystem I and energy transfer from photosystem II to photosystem I were modified depending on the light quality, light quantity, and cultivation period. However, the total amount of energy transferred to photosystem I remained constant under the different growth conditions. We discuss the differences in energy-transfer processes under different cultivation and light conditions.  相似文献   
50.
Antigen-specific regulatory CD4+ T cells have been described but there are few reports on regulatory CD8+ T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8+ T cells from 8.3-NOD transgenic mice. CD8+ T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-β, and all-trans retinoic acid (ATRA) for 5 days. CD8+ T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-β and ATRA had low Foxp3+ expression (1.7 ± 0.9% and 3.2 ± 4.5%, respectively). In contrast, CD8+ T cells induced by exposure to IGRP, SpDCs, TGF-β, and ATRA showed the highest expression of Foxp3+ in IGRP-reactive CD8+ T cells (36.1 ± 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8+ T cells cultured with IGRP, SpDCs, TGF-β, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8+ T cells suppressed the proliferation of diabetogenic CD8+ T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-β induces CD8+Foxp3+ T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号