首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   44篇
  国内免费   17篇
  2024年   3篇
  2023年   5篇
  2022年   18篇
  2021年   30篇
  2020年   21篇
  2019年   24篇
  2018年   29篇
  2017年   25篇
  2016年   36篇
  2015年   48篇
  2014年   47篇
  2013年   41篇
  2012年   44篇
  2011年   46篇
  2010年   27篇
  2009年   23篇
  2008年   37篇
  2007年   21篇
  2006年   29篇
  2005年   22篇
  2004年   19篇
  2003年   18篇
  2002年   11篇
  2001年   7篇
  2000年   2篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有711条查询结果,搜索用时 140 毫秒
161.
Quantitative measurement of active polysomes of developing chick muscle   总被引:1,自引:0,他引:1  
The hatching process in embryos of the toad Xenopus laevis consists of two temporally distinct phases. In phase 1, the embryo escapes sequentially from the two outermost jelly layers, J3 and J2, and during phase 2 the embryo hatches from the last remaining jelly coat layer J1 and the fertilization envelope. Phase 1 hatching appears to be a physical process caused by water inbibition of jelly coat layer J1 and dynamic changes in the volume enclosed by the fertilization envelope. The combined turgor pressure ruptures jelly coat layers J3 and J2. The subsequent phase 2 hatching is a result of both physical and chemical processes. Phase 1 hatching exposes layer J1 to the medium which, in contrast to jelly layers J2 and J3 is partially soluble, and permits its gradual dissolution during Phase 2. The embryo secretes a proteolytic enzyme from the frontal region which partially digests the fertilization envelope; subsequent embryo movement ruptures the weakened envelope and completes the hatching process.  相似文献   
162.
Fan  Nana  Wen  Wuwu  Gao  Li  Lv  Aimin  Su  Liantai  Zhou  Peng  An  Yuan 《Plant and Soil》2022,477(1-2):357-371
Plant and Soil - Aluminum (Al) stress is a global problem that inhibits root growth and crop production in acidic soils. The inhibitive effect is greatly attributed to the reduction of cell wall...  相似文献   
163.
Strain Hhs.015, a PGPR strain well‐studied for biocontrol of apple Valsa canker, was isolated from cucumber roots and classified as a new species of Saccharothrix yanglingensis. Hhs.015 was able to colonize apple tissue culture seedlings and trigger disease resistance. According to the whole‐genome sequence of S. yanglingensis Hhs.015, its secreted proteins were predicted and analysed, which can help to find out Hhs.015 functional substances that are involved in inducing plant system resistance and also the molecular mechanisms of the interaction between Hhs.015 and the host plants. Using the software SignalP4.1, TMHMM2.0, DAS‐TMfilter, HMMTOP, ScanProsite, PSORT and big‐PI predictor, 7,379 ORFs of the genome of S. yanglingensis Hhs.015 were predicted and analysed. Moreover, the function of ORFs where the signal peptides come from was predicted by Swissprot database. The selected proteins were obtained by prokaryotic expression. Their effects in inducing plant resistance to the pathogen Valsa mali, resistance‐related enzyme activity and growth promotion analysis were evaluated. In total, 158 ORFs with known function, such as serine proteinase and transpeptidase, were identified; the remaining 142 ORFs were function‐unknown putative proteins. Five putative proteins were successfully obtained by prokaryotic expression, and the results showed that the protein named 5620g could enhance the plant disease resistance to the pathogen V. mali, inhibit the expansion of lesions and upregulate the defence‐related enzyme activity. The protein named 3176g could prolongate cucumber root. In conclusion, biocontrol strain Hhs.015 may secrete protein elicitors to improve plant resistance to the pathogenic microorganism and promote the growth of host plants.  相似文献   
164.
Mechanisms and consequences of biological invasions are a global issue. Yet, one of the key aspects, the initial phase of invasion, is rarely observed in detail. Data from aerial photographs covering the spread of Heracleum mantegazzianum (Apiaceae, native to Caucasus) on a local scale of hectares in the Czech Republic from the beginning of invasion were used as an input for an individual-based model (IBM), based on small-scale and short-time data. To capture the population development inferred from the photographs, long-distance seed dispersal, changes in landscape structures and suitability of landscape elements to invasion by H. mantegazzianum were implemented in the model. The model was used to address (1) the role of long-distance dispersal in regional invasion dynamics, and (2) the effect of land-use changes on the progress of the invasion. Simulations showed that already small fractions of seed subjected to long-distance dispersal, as determined by systematic comparison of field data and modelling results, had an over-proportional effect on the spread of this species. The effect of land-use changes on the simulated course of invasion depends on the actual level of habitat saturation; it is larger for populations covering a high proportion of available habitat area than for those in the initial phase of invasion. Our results indicate how empirical field data and model outputs can be linked more closely with each other to improve the understanding of invasion dynamics. The multi-level, but nevertheless simple structure of our model suggests that it can be used for studying the spread of similar species invading in comparable landscapes.  相似文献   
165.
166.
The endomembrane system is a complex and dynamic intracellular trafficking network. It is very challenging to track individual vesicles and their cargos in real time; however, affinity purification allows vesicles to be isolated in their natural state so that their constituent proteins can be identified. Pioneering this approach in plants, we isolated the SYP61 trans-Golgi network compartment and carried out a comprehensive proteomic analysis of its contents with only minimal interference from other organelles. The proteome of SYP61 revealed the association of proteins of unknown function that have previously not been ascribed to this compartment. We identified a complete SYP61 SNARE complex, including regulatory proteins and validated the proteome data by showing that several of these proteins associated with SYP61 in planta. We further identified the SYP121-complex and cellulose synthases, suggesting that SYP61 plays a role in the exocytic trafficking and the transport of cell wall components to the plasma membrane. The presence of proteins of unknown function in the SYP61 proteome including ECHIDNA offers the opportunity to identify novel trafficking components and cargos. The affinity purification of plant vesicles in their natural state provides a basis for further analysis and dissection of complex endomembrane networks. The approach is widely applicable and can afford the study of several vesicle populations in plants, which can be compared with the SYP61 vesicle proteome.  相似文献   
167.
The effects of some selected arbuscular mycorrhizal (AM) fungi, Gigaspora margarita and Glomus mossae on the growth and the role of soluble amino acids of two contrasting cocoa cultivars (ICS84 tolerant and SNK10 sensitive) against black pod disease caused by Phytophthora megakarya were investigated. Root colonization by AM fungi is between 50 and 70% 18 weeks after planting. Tested AM fungi significantly increased all the plant growth parameters (height, number of leaves, shoot and root matter) and P uptake as compared to non‐inoculated plants in pot experiments. AM fungi inoculated cocoa reduced the disease severity. Compared to the control, the soluble amino acid levels increased with inoculation of the AM fungi strains in the necrotic stems of disease on inoculated cocoa plants. Significant relationships between amino acids and disease severity observed for two cocoa cultivars imply that the induction of specific amino acids synthesized by leaves, such as arginine, cysteine and glutamic acid, may represent potential candidate molecules for adaptation of such cultivars to P. megakarya disease. Inoculating seedlings with AMF in nurseries could enhance the development of cocoa plants protected against P. megakarya.  相似文献   
168.
Triterpene saponins are a diverse group of biologically functional products in plants. Saponins usually are glycosylated, which gives rise to a wide diversity of structures and functions. In the group A saponins of soybean (Glycine max), differences in the terminal sugar species located on the C-22 sugar chain of an aglycone core, soyasapogenol A, were observed to be under genetic control. Further genetic analyses and mapping revealed that the structural diversity of glycosylation was determined by multiple alleles of a single locus, Sg-1, and led to identification of a UDP-sugar-dependent glycosyltransferase gene (Glyma07g38460). Although their sequences are highly similar and both glycosylate the nonacetylated saponin A0-αg, the Sg-1(a) allele encodes the xylosyltransferase UGT73F4, whereas Sg-1(b) encodes the glucosyltransferase UGT73F2. Homology models and site-directed mutagenesis analyses showed that Ser-138 in Sg-1(a) and Gly-138 in Sg-1(b) proteins are crucial residues for their respective sugar donor specificities. Transgenic complementation tests followed by recombinant enzyme assays in vitro demonstrated that sg-1(0) is a loss-of-function allele of Sg-1. Considering that the terminal sugar species in the group A saponins are responsible for the strong bitterness and astringent aftertastes of soybean seeds, our findings herein provide useful tools to improve commercial properties of soybean products.  相似文献   
169.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of beta1,6-GlcNAc branching of N-glycans, which contributes to metastasis. N-acetylglucosaminyltransferase III (GnT-III) catalyzes the formation of a bisecting GlcNAc structure in N-glycans, resulting in the suppression of metastasis. It has long been hypothesized that the suppression of GnT-V product formation by the action of GnT-III would also exist in vivo, which will consequently lead to the inhibition of biological functions of GnT-V. To test this, we draw a comparison among MKN45 cells, which were transfected with GnT-III, GnT-V, or both, respectively. We found that alpha3beta1 integrin-mediated cell migration on laminin 5 was greatly enhanced in the case of GnT-V transfectant. This enhanced cell migration was significantly blocked after the introduction of GnT-III. Consistently, an increase in bisected GlcNAc but a decrease in beta1,6-GlcNAc-branched N-glycans on integrin alpha3 subunit was observed in the double transfectants of GnT-III and GnT-V. Conversely, GnT-III knockdown resulted in increased migration on laminin 5, concomitant with an increase in beta1,6-GlcNAc-branched N-glycans on the alpha3 subunit in CHP134 cells, a human neuroblastoma cell line. Therefore, in this study, the priority of GnT-III for the modification of the alpha3 subunit may be an explanation for why GnT-III inhibits GnT-V-induced cell migration. Taken together, our results demonstrate for the first time that GnT-III and GnT-V can competitively modify the same target glycoprotein and furthermore positively or negatively regulate its biological functions.  相似文献   
170.
The core fucosylation (alpha1,6-fucosylation) of glycoprotein is widely distributed in mammalian tissues. Recently alpha1,6-fucosylation has been further reported to be very crucial by the study of alpha1,6-fucosyltransferase (Fut8)-knock-out mice, which shows the phenotype of emphysema-like changes in the lung and severe growth retardation. In this study, we extensively investigated the effect of core fucosylation on alpha3beta1 integrin and found for the first time that Fut8 makes an important contribution to the functions of this integrin. The role of core fucosylation in alpha3beta1 integrin-mediated events has been studied by using Fut8(+/+) and Fut8(-/-) embryonic fibroblasts, respectively. We found that the core fucosylation of alpha3beta1 integrin, the major receptor for laminin 5, was abundant in Fut8(+/+) cells but was totally abolished in Fut8(-/-) cells, which was associated with the deficient migration mediated by alpha3beta1 integrin in Fut8(-/-) cells. Moreover integrin-mediated cell signaling was reduced in Fut8(-/-) cells. The reintroduction of Fut8 potentially restored laminin 5-induced migration and intracellular signaling. Collectively, these results suggested that core fucosylation is essential for the functions of alpha3beta1 integrin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号