首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2753篇
  免费   143篇
  2023年   4篇
  2022年   18篇
  2021年   42篇
  2020年   26篇
  2019年   23篇
  2018年   42篇
  2017年   42篇
  2016年   53篇
  2015年   93篇
  2014年   115篇
  2013年   165篇
  2012年   180篇
  2011年   192篇
  2010年   133篇
  2009年   126篇
  2008年   186篇
  2007年   195篇
  2006年   167篇
  2005年   157篇
  2004年   176篇
  2003年   164篇
  2002年   181篇
  2001年   27篇
  2000年   21篇
  1999年   32篇
  1998年   34篇
  1997年   32篇
  1996年   19篇
  1995年   28篇
  1994年   19篇
  1993年   33篇
  1992年   12篇
  1991年   10篇
  1990年   13篇
  1989年   13篇
  1988年   8篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   13篇
  1983年   9篇
  1982年   15篇
  1981年   5篇
  1980年   8篇
  1979年   5篇
  1978年   6篇
  1975年   4篇
  1974年   6篇
  1973年   3篇
  1965年   3篇
排序方式: 共有2896条查询结果,搜索用时 15 毫秒
101.
N-3 fatty acids exert a potent serum lipid-lowering effect in rodents mainly by affecting hepatic fatty acid oxidation and synthesis. However, it has been observed that fish oil and docosahexaenoic acid ethyl ester do not lower serum lipid levels in apolipoprotein E (apoE)-knockout (Apoetm1Unc) mice generated by gene targeting. To test the hypothesis that apoE expression is required for n-3 fatty acid-dependent regulation of serum lipid levels and hepatic fatty acid metabolism, we examined the effect of fish oil and n-3 fatty acid ethyl esters on the activity and gene expression of hepatic enzymes involved in fatty acid oxidation and synthesis using an alternative apoE-deficient mouse model with the BALB/c genetic background (BALB/c.KOR-Apoeshl). ApoE-deficient mice were fed diets containing 9.4% palm oil, fish oil, or 5.4% palm oil and 1% EPA plus 3% DHA ethyl esters for 15 days. In contrast to the reported data on apoE-knockout mice, fish oil and n-3 fatty acid ethyl esters greatly decreased serum triacylglycerol, cholesterol, and phospholipid levels in the Apoeshl mice. The decreases were greater with fish oil than with ethyl esters. The alterations by dietary n-3 fatty acids of serum lipid levels were accompanied by parallel changes in the activity and mRNA levels of enzymes involved in hepatic fatty acid oxidation and synthesis. The reason for the discrepancy between the results of the current study and previous studies is unknown. However, our study at least indicates that a lack of apoE expression does not necessarily accompany deficits in the n-3 fatty acid-dependent regulation of serum lipid levels and hepatic fatty acid metabolism.  相似文献   
102.
In addition to a signal arising from the physical "stretching" of the adipocytes, metabolic and endocrine regulation of leptin production seems to operate in adipocytes. There is however a paucity of literature examining direct role of fatty acid synthesis in regulating adipocytes leptin production. To clarify the relation between fatty acid synthesis and leptin release in adipocytes, we examined leptin release from primary cultured rat epididymal adipocytes with several substances relevance to de novo fatty acid syntyhesis. Bezafibrate (0.5 or 1.0 mM), known to inhibit acetyl-CoA carboxylase, decreased leptin release to 60.3 +/- 7.2 or 47.3 +/- 11.9%, while cerulenin (15, 30, or 75 mM), an inhibitor of fatty acid synthase, increased it by 20.5 +/- 7.7, 58.5 +/- 12.1 or 105.0 +/- 35.0% of the control. Exogenous pyruvate (2.5, 5.0, or 10.0 mM) and malonyl-CoA (10, 20, or 40 mM), substrates and intermediate of fatty acid synthesis, increased leptin release by 11.0 +/- 3.3, 21.5 +/- 5.4, or 61.0 +/- 10.7%, and 11.1 +/- 3.0, 41.1 +/- 9.7 or 56.7 +/- 7.9% of the control, respectively. Considering difference in the site of action of bezafibrate and cerulenin along fatty acid synthesis pathway, one plausible explanation is that malonyl-CoA levels act as a signal of fuel availability to trigger leptin synthesis and/or secretion in adipocytes. Keywords: Leptin secretion; Fatty acid synthesis; Malonyl-CoA; Rat adipocytes.  相似文献   
103.
Placental leucine aminopeptidase (P-LAP), a cystine aminopeptidase that is identical to insulin-regulated membrane aminopeptidase, hydrolyzes oxytocin, which results in the loss of oxytocin activity. We previously isolated genomic clones containing the human P-LAP promoter region, which included two sites homologous to the 10-bp-insulin responsive element (IRE) that was identified on the phosphoenolpyruvate carboxinase gene. We therefore postulated that insulin regulates P-LAP expression via these IREs and investigated this notion using BeWo choriocarcinoma trophoblastic cells cultured in the presence of insulin. Insulin increased P-LAP activity in a time- and dose-dependent manner. Physiological concentrations of insulin at 10(-7) M exhibited the most potent effect on P-LAP activity. Western blotting demonstrated that 10(-7) M insulin increased P-LAP protein levels. Semi-quantitative RT-PCR and Southern blotting showed that insulin also increased P-LAP mRNA, which was abrogated by prior exposure to cycloheximide. Luciferase assay did not reveal any regulatory regions within 1.1 kb upstream of the P-LAP gene that could explain the insulin-induced P-LAP mRNA accumulation. These findings indicate that insulin induces P-LAP expression in trophoblasts, and that it acts via de novo synthesis of other proteins, which partially contradicts our initial hypothesis.  相似文献   
104.
Pancreatic stellate cells (PSCs) play a central role in development of pancreatic fibrosis. In chronic pancreatitis, pancreatic tissue pressure is higher than that of the normal pancreas. We here evaluate the effects of pressure on the activation of rat PSCs. PSCs were isolated from the pancreas of Wistar rat using collagenase digestion and centrifugation with Nycodenz gradient. Pressure was applied to cultured rat PSCs by adding compressed helium gas into the pressure-loading apparatus to raise the internal pressure. Cell proliferation rate was assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation. MAPK protein levels and alpha-smooth muscle actin (alpha-SMA) expression were evaluated by Western blot analysis. Concentration of activated transforming growth factor-beta1 (TGF-beta1) secreted from PSCs into culture medium was determined by ELISA. Collagen type I mRNA expression and collagen secretion were assessed by quantitative PCR and Sirius red dye binding assay, respectively. Application of pressure significantly increased BrdU incorporation and alpha-SMA expression. In addition, pressure rapidly increased the phosphorylation of p44/42 and p38 MAPK. Treatment of PSCs with an MEK inhibitor and p38 MAPK inhibitor suppressed pressure-induced cell proliferation and alpha-SMA expression, respectively. Moreover, pressure significantly promoted activated TGF-beta1 secretion, collagen type I mRNA expression, and collagen secretion. Our results demonstrate that pressure itself activates rat PSCs and suggest that increased pancreatic tissue pressure may accelerate the development of pancreatic fibrosis in chronic pancreatitis.  相似文献   
105.
Activated microglia have been suggested to produce a cytotoxic cytokine, tumor necrosis factor alpha (TNF alpha), in many pathological brains. Thus, determining the molecular mechanism of this induction and suppression has been the focus of a great deal of research. Using lipopolysaccharide (LPS) as an experimental inducer of TNF alpha, we investigated the regulatory mechanism by which TNFalpha is induced or suppressed in microglia. We found that LPS-induced TNF alpha is suppressed by pretreatment with the p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580. Similar suppression was achieved by pretreatment with specific protein kinase C (PKC) inhibitors, G?6976, myristoylated pseudosubstrate (20-28), and bisindolylmaleimide. These results suggest that PKC alpha activity as well as p38MAPK activity is associated with TNF alpha induction in LPS-stimulated microglia. The requirement of PKC alpha in LPS-dependent TNFalpha induction was verified in PKC alpha-downregulated microglia which could be induced by phorbol-12-myristate-13-acetate pretreatment. Simultaneously, PKC alpha was found to be requisite for the activation of p38MAPK in LPS-stimulated microglia. In addition, the PKC alpha levels in the LPS-stimulated microglia were observed to decrease in response to the p38MAPK inhibitor, indicating that the PKC alpha levels are regulated by the p38MAPK activity. We therefore concluded that PKC alpha and p38MAPK are interactively linked to the signaling cascade inducing TNFalpha in LPS-stimulated microglia, and that in this cascade, PKC alpha is requisite for the activation of p38MAPK, leading to the induction of TNF alpha.  相似文献   
106.
In this study, we report the design, synthesis and structure-activity relationships of novel indazole derivatives as DNA gyrase inhibitors with Gram-positive antibacterial activity. Our results show that selected compounds from this series exhibit potent antibacterial activity against Gram-positive bacteria including multi-drug resistant strains that is methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE).  相似文献   
107.
Kinetic characteristics and toxic effects of benzalkonium chloride (BZK) following injection via jugular vein (JV), femoral artery (FA) and oral administration (PO) were experimentally investigated using rats. The BZK concentrations in blood and tissues (lung, liver and kidney) were determined by high-performance liquid chromatography with solid phase extraction. Toxic doses of 15 and 250 mg/kg of BZK were used for intravascular (JV and FA) and PO administration, respectively. The fatal effects appeared soon after the dose in JV-rats, while delayed in FA- or PO-rats. The blood BZK concentrations and the elimination half-lives were similar between JV- and FA-rats, while the distribution of BZK in tissues was slightly different. In PO administration, the rats that aspirated BZK into their lungs had some symptoms, while the rats that did not aspirate BZK appeared to be normal. The BZK concentrations in blood and tissues were significantly higher in the aspirated PO-rats. The toxic degree of BZK was correlated with the BZK concentration in orally dosed rats. Lung and kidney had higher BZK concentrations compared to blood or liver, and they could be the target organs of BZK.Keyword: Benzalkonium chloride  相似文献   
108.
Several compounds were found to suppress the calling behavior and in vitro pheromone biosynthesis of the Indian meal moth, Plodia interpunctella. The compounds were screened by means of a calling-behavior bioassay with female P. interpunctella. Five derivatives with activities in the nanomolar range were identified, in order of decreasing pheromonostatic activity: 4-hydroxybenzaldehyde semicarbazone (42) > 5-(4-methoxyphenyl)-1,3-oxazole (38) > 5-[4-(tert-butyl)phenyl]-1,3-oxazole (40) > 5-(3-methoxyphenyl)-1,3-oxazole (35) > 5-(4-cyanophenyl)-1,3-oxazole (36). These compounds also showed in vitro inhibitory activity in intracellular de novo pheromone biosynthesis, as determined with isolated pheromone-gland preparations that incorporated [1-(14)C]sodium acetate in the presence of the so-called pheromone-biosynthesis-activating neuropeptide (PBAN). The non-additive effect of the inhibitor with antagonist (yohimbine) for the tyramine (TA) receptor suggests that it could be a tyraminergic antagonist. Three-dimensional (3D) computer models were built from a set of compounds. Among the common-featured models generated by the program Catalyst/HipHop, aromatic-ring (AR) and H-bond-acceptor-lipophilic (HBAl) features were considered to be essential for inhibitory activity in the calling behavior and in vitro pheromone biosynthesis. Active compounds, including yohimbine, mapped well onto all the AR and HBAl features of the hypothesis. Less-active compounds were shown to be unable to achieve an energetically favorable conformation, consistent with our 3D common-feature pharmacophore models. The present hypothesis demonstrates that calling behavior and PBAN-stimulated incorporation of radioactivity are inhibited by tyraminergic antagonists.  相似文献   
109.
A series of alkyl and aryl phosphonyl, thiophosphonyl, and dithiophosphonyl derivatives of (S)- and (R)-glutamic acid were prepared and examined for inhibitory potency against glutamate carboxypeptidase (carboxypeptidase G). The acquisition of the phosphonamidodithioic acids and the individual phosphonamidothioic acid diastereomers was achieved through a common phosphonamidothiolate precursor, which also allowed for the chromatographic resolution of the chiral phosphorus center of the phosphonamidothioic acids. The most potent inhibitor of the series was the n-butylphosphonamidate derivative of the natural isomer of glutamic acid. Although each diastereomeric pair of three phosphonamidothionates exhibited stereoselective inhibition consistent with the configuration of the chiral phosphorus center, this effect was generally not remarkable. More important, was the effect of carbon stereochemistry upon glutamate carboxypeptidase inhibition as exemplified by a limited series of enantiomeric pairs of phosphonamidate and phosphonamidodithionate derivatives of glutamic acid. The phosphonamidate analogs derived from the unnatural stereoisomer of glutamic acid were devoid of inhibitory potency in contrast to their enantiomers. Surprisingly, the phosphonamidodithionates derived from the unnatural stereoisomer of glutamic acid demonstrated greater inhibitory potency than their naturally-derived antipodes.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号