首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4349篇
  免费   220篇
  4569篇
  2022年   20篇
  2021年   46篇
  2020年   32篇
  2019年   31篇
  2018年   54篇
  2017年   50篇
  2016年   73篇
  2015年   130篇
  2014年   153篇
  2013年   249篇
  2012年   263篇
  2011年   279篇
  2010年   187篇
  2009年   177篇
  2008年   255篇
  2007年   281篇
  2006年   245篇
  2005年   238篇
  2004年   260篇
  2003年   230篇
  2002年   241篇
  2001年   85篇
  2000年   83篇
  1999年   85篇
  1998年   57篇
  1997年   57篇
  1996年   40篇
  1995年   54篇
  1994年   39篇
  1993年   49篇
  1992年   45篇
  1991年   54篇
  1990年   45篇
  1989年   41篇
  1988年   32篇
  1987年   34篇
  1986年   28篇
  1985年   30篇
  1984年   34篇
  1983年   23篇
  1982年   23篇
  1981年   15篇
  1980年   14篇
  1979年   11篇
  1978年   12篇
  1977年   8篇
  1975年   15篇
  1974年   8篇
  1972年   6篇
  1969年   8篇
排序方式: 共有4569条查询结果,搜索用时 15 毫秒
61.
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation.  相似文献   
62.
Genetic disruption of Hoxa3 results in bilateral defects of the common carotid artery, which is derived from the third branchial arch artery. The tunica media of the great arteries derived from the arch arteries is formed by the ectomesenchymal neural crest cells. To examine the etiology of the regression of the third arch artery, we generated Hoxa3 homozygous null mutant embryos that expressed a lacZ marker transgene driven by a connexin43 (Cx43): promoter in the neural crest cells. The expression of -galactosidase in these mouse embryos was examined by both whole-mount X-gal staining and immunohistochemistry with the monoclonal -galactosidase antibody on sections. The migration of neural crest cells from the neural tube to the third branchial arch was not affected in the Hoxa3 homozygotes. The initial formation of the third arch artery was also not disturbed. The artery, however, regressed at embryonic day 11.5 (E11.5), when differentiation of the third pharyngeal arch began. The internal and external carotid arteries arose from the dorsal aorta in E12.5 null mutants, which showed an abnormal persistence of the ductus caroticus. The third pharyngeal arch of wild-type mice fuses with the fourth and second arches at E12.0. In the Hoxa3 null mutants, however, the fusion was delayed, and the hypoplastic third pharyngeal arch was still discerned at E12.5. Moreover, the number of proliferating cells in the third arch of the null mutants was small compared with that in the wild-type. Thus, Hoxa3 is required for the growth and differentiation of the third pharyngeal arch. The defective development of the third pharyngeal arch may induce the anomalies of the carotid artery system. This work was supported in part by a grant (no. 14570026) from the Ministry of Education of Japan to Y.K.  相似文献   
63.
A psychrophilic alanine racemase from Bacillus psychrosaccharolyticus has a higher catalytic activity than a thermophilic alanine racemase from Bacillus stearothermophilus even at 60 °C in the presence of pyridoxal 5′-phosphate (PLP), although the thermostability of the former enzyme is lower than that of the latter one [FEMS Microbial. Lett. 192 (2000) 169]. In order to improve the thermostability of the psychrophilic enzyme, two hydrophilic amino acid residues (Glu150 and Arg151) at a surface loop surrounding the active site of the enzyme were substituted with the corresponding residues (Val and Ala) in the B. stearothermophilus alanine racemase. The mutant enzyme (ER150,151VA) showed a higher thermostability, and a markedly lower Km value for PLP, than the wild type one. In addition, the catalytic activities at low temperatures and kinetic parameters of the two enzymes indicated that the mutant enzyme was more psychrophilic than the wild type one. Thus, the psychrophilic alanine racemase was improved in both psychrophilicity and thermostability by the site-directed mutagenesis. The mutant enzyme may be useful for the production of stereospecifically deuterated NADH and various -amino acids.  相似文献   
64.
The mangrove killifish Rivulus marmoratus, a neotropical fish in the order Cyprinodontiformes, is the only known obligatorily selfing, synchronous hermaphroditic vertebrate. To shed light on its population structure and the origin of hermaphroditism, major histocompatibility complex (Mhc) class I genes of the killifish from seven different localities in Florida, Belize, and the Bahamas were cloned and sequenced. Thirteen loci and their alleles were identified and classified into eight groups. The loci apparently arose approximately 20 million years ago (MYA) by gene duplications from a single common progenitor in the ancestors of R. marmoratus and its closest relatives. Distinct loci were found to be restricted to different populations and different individuals in the same population. Up to 44% of the fish were heterozygotes at Mhc loci, as compared to near homozygosity at non-Mhc loci. Large genetic distances between some of the Mhc alleles revealed the presence of ancestral allelic lineages. Computer simulation designed to explain these findings indicated that selfing is incomplete in R. marmoratus populations, that Mhc allelic lineages must have diverged before the onset of selfing, and that the hermaphroditism arose in a population containing multiple ancestral Mhc lineages. A model is proposed in which hermaphroditism arose stage-wise by mutations, each of which spread through the entire population and was fixed independently in the emerging clones.  相似文献   
65.
Ishii T  Sakurai T  Usami H  Uchida K 《Biochemistry》2005,44(42):13893-13901
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells.  相似文献   
66.
Acidiphilium multivorum AIU 301 isolated from acid mineral water had strong arsenic resistance. This bacterium harbored a number of plasmids with different molecular sizes. A plasmid of 56 kbp, named pKW301, was isolated from A. multivorum AIU 301. When pKW301 was transferred into Escherichia coli JM109 by electroporation, an E. coli transformant carrying pKW301 exhibited resistance to sodium arsenite, sodium arsenate, and mercuric (II) chloride.  相似文献   
67.
Oxidative stress triggered by aluminum in plant roots   总被引:4,自引:0,他引:4  
Aluminum (Al) is a major growth-limiting factor for plants in acid soils. The primary site of Al accumulation and toxicity is the root meristem, and the inhibition of root elongation is the most sensitive response to Al. Al cannot catalyze redox reactions but triggers lipid peroxidation and reactive oxygen species (ROS) production in roots. Furthermore, Al causes respiration inhibition and ATP depletion. Comparative studies of Al toxicity in roots with that in cultured plant cells suggest that Al causes dysfunction and ROS production in mitochondria, and that ROS production, but not lipid peroxidation, seems to be a determining factor of root-elongation inhibition by Al.  相似文献   
68.
Viruses are extremely abundant in seawater and are believed to be significant pathogens to photosynthetic protists (microalgae). Recently, several novel RNA viruses were found to infect marine photosynthetic protists; one of them is HcRNAV, which infects Heterocapsa circularisquama (Dinophyceae). There are two distinct ecotypes of HcRNAV with complementary intraspecies host ranges. Nucleotide sequence comparison between them revealed remarkable differences in the coat protein coding gene resulting in a high frequency of amino acid substitutions. However, the detailed mechanism supporting this intraspecies host specificity is still unknown. In this study, virus inoculation experiments were conducted with compatible and incompatible host-virus combinations to investigate the mechanism determining intraspecies host specificity. Cells were infected by adding a virus suspension directly to a host culture or by transfecting viral RNA into host cells by particle bombardment. Virus propagation was monitored by Northern blot analysis with a negative-strand-specific RNA probe, transmission electron microscopy, and a cell lysis assay. With compatible host-virus combinations, propagation of infectious progeny occurred regardless of the inoculation method used. When incompatible combinations were used, direct addition of a virus suspension did not even result in viral RNA replication, while in host cells transfected with viral RNA, infective progeny virus particles with a host range encoded by the imported viral RNA were propagated. This indicates that the intraspecies host specificity of HcRNAV is determined by the upstream events of virus infection. This is the first report describing the reproductive steps of an RNA virus infecting a photosynthetic protist at the molecular level.  相似文献   
69.
The subunit composition of RNA polymerase II (polII) was compared between the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. For this purpose, we partially purified the enzyme from S. pombe. Judging from the co-elution profiles in column chromatographies of both the RNA polymerase activity and the two large subunit polypeptides (subunit 1 (prokaryotic β' homologue) and subunit 2 (β homologue)), the minimum number of S. pombe polII-associated polypeptides was estimated to be ten, less than the proposed subunit number of the S. cerevisiae enzyme. These ten putative subunits of S. pombe polII correspond to subunits 1, 2, 3, 5, 6, 7, 8, 10, 11 and 12 of the S. cerevisiae counterparts  相似文献   
70.
Platelet-derived growth factor (PDGF) is a potent mitogen. Extensive in vivo studies of PDGF and its receptor (PDGFR) genes have reported that PDGF plays an important role in embryogenesis and development of the central nervous system (CNS). Furthermore, PDGF and the β subunit of the PDGF receptor (PDGFR-β) have been reported to be associated with schizophrenia and autism. However, no study has reported on the effects of PDGF deletion on mice behavior. Here we generated novel mutant mice (PDGFR-β KO) in which PDGFR-β was conditionally deleted in CNS neurons using the Cre/loxP system. Mice without the Cre transgene but with floxed PDGFR-β were used as controls. Both groups of mice reached adulthood without any apparent anatomical defects. These mice were further examined by conducting several behavioral tests for spatial memory, social interaction, conditioning, prepulse inhibition, and forced swimming. The test results indicated that the PDGFR-β KO mice show deficits in all of these areas. Furthermore, an immunohistochemical study of the PDGFR-β KO mice brain indicated that the number of parvalbumin (calcium-binding protein)-positive (i.e., putatively γ-aminobutyric acid-ergic) neurons was low in the amygdala, hippocampus, and medial prefrontal cortex. Neurophysiological studies indicated that sensory-evoked gamma oscillation was low in the PDGFR-β KO mice, consistent with the observed reduction in the number of parvalbumin-positive neurons. These results suggest that PDGFR-β plays an important role in cognitive and socioemotional functions, and that deficits in this receptor may partly underlie the cognitive and socioemotional deficits observed in schizophrenic and autistic patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号