首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2739篇
  免费   125篇
  2864篇
  2023年   4篇
  2022年   18篇
  2021年   43篇
  2020年   23篇
  2019年   21篇
  2018年   41篇
  2017年   40篇
  2016年   52篇
  2015年   93篇
  2014年   116篇
  2013年   165篇
  2012年   183篇
  2011年   193篇
  2010年   134篇
  2009年   124篇
  2008年   187篇
  2007年   194篇
  2006年   164篇
  2005年   157篇
  2004年   178篇
  2003年   167篇
  2002年   187篇
  2001年   22篇
  2000年   20篇
  1999年   31篇
  1998年   34篇
  1997年   30篇
  1996年   20篇
  1995年   27篇
  1994年   17篇
  1993年   32篇
  1992年   9篇
  1991年   12篇
  1990年   15篇
  1989年   12篇
  1988年   9篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   9篇
  1983年   7篇
  1982年   12篇
  1981年   4篇
  1980年   7篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   3篇
排序方式: 共有2864条查询结果,搜索用时 13 毫秒
41.
Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body.  相似文献   
42.

Obstructive sleep apnea syndrome (OSAS) is closely associated with hypertension. Activity of angiotensin II (Ang II) and non-dipping nocturnal blood pressure (BP) variability are implicated in hypertension-related target organ damage. We examined the correlation between OSAS with serum Ang II levels and evaluated the risk of non-dipping BP variability in 180 patients with essential hypertension (EHT). Eligible patients were divided into three subgroups based on their apnea-hypopnea index (AHI) evaluated by polysomnography. EHT alone, EHT with mild OSAS, and EHT with moderate/severe OSAS. Ambulatory BP monitoring was used to calculate mean BP over 24 h, as well as diurnal and nocturnal BP variability. Serum Ang II was determined with enzyme-linked immun-osorbent assay. EHT patients with OSAS had significantly higher systolic BP calculated either over 24 h, or by diurnal or nocturnal monitoring (P < 0.05). More EHT patients with OSAS showed non-dipping BP profiles than did EHT patients alone (P < 0.05). The number of patients with non-dipping BP increased with increasing OSAS severity. Surgical treatment alleviated OSAS and reduced AHI (P < 0.05). Preoperative serum Ang II in EHT patients with OSAS was significantly higher than that in those without OSAS (P < 0.05), and showed a rising trend with OSAS severity (P < 0.05). Postoperative serum Ang II, BP and the incidence of non-dipping BP were reduced by surgery to levels lower than preoperative values in patients with OSAS. We therefore conclude that OSAS leads to increased serum Ang II and increased risk of non-dipping BP in patients with EHT.

  相似文献   
43.
44.
45.
Alpha1,6-fucosyltransferase (Fut8) plays important roles inphysiological and pathological conditions. Fut8-deficient (Fut8–/–)mice exhibit growth retardation, earlier postnatal death, andemphysema-like phenotype. To investigate the underlying molecularmechanism by which growth retardation occurs, we examined themRNA expression levels of Fut8–/– embryos (18.5days postcoitum [dpc]) using a cDNA microarray. The DNA microarrayand real-time polymerase chain reaction (PCR) analysis showedthat a group of genes, including trypsinogens 4, 7, 8, 11, 16,and 20, were down-regulated in Fut8–/– embryos.Consistently, the expression of trypsinogen proteins was foundto be lower in Fut8–/– mice in the duodenum, smallintestine, and pancreas. Trypsin, an active form of trypsinogen,regulates cell growth through a G-protein-coupled receptor,the proteinase-activated receptor 2 (PAR-2). In a cell culturesystem, a Fut8 knockdown mouse pancreatic acinar cell carcinoma,TGP49-Fut8-KDs, showed decreased growth rate, similar to thatseen in Fut8–/– mice, and the decreased growth ratewas rescued by the application of the PAR-2-activating peptide(SLIGRL-NH2). Moreover, epidermal growth factor (EGF)-inducedreceptor phosphorylation was attenuated in TGP49-Fut8-KDs, whichwas highly associated with a reduction of trypsinogens mRNAlevels. The addition of exogenous EGF recovered c-fos, c-jun,and trypsinogen mRNA expression in TGP49-Fut8-KDs. Again, theEGF-induced up-regulation of c-fos and c-jun mRNA expressionwas significantly blocked by the protein kinase C (PKC) inhibitor.Our findings clearly demonstrate a relationship between Fut8and the regulation of EGF receptor (EGFR)-trypsin-PAR-2 pathwayin controlling cell growth and that the EGFR-trypsin-PAR-2 pathwayis suppressed in TGP49-Fut8-KDs as well as in Fut8–/–mice.  相似文献   
46.
Multidrug-resistant enterococci are considered crucial drivers for the dissemination of antimicrobial resistance determinants within and beyond a genus. These organisms may pass numerous resistance determinants to other harmful pathogens, whose multiple resistances would cause adverse consequences. Therefore, an understanding of the coexistence epidemiology of resistance genes is critical, but such information remains limited. In this study, our first objective was to determine the prevalence of principal resistance phenotypes and genes among Enterococcus faecalis isolated from retail chicken domestic products collected throughout Japan. Subsequent analysis of these data by using an additive Bayesian network (ABN) model revealed the co-appearance patterns of resistance genes and identified the associations between resistance genes and phenotypes. The common phenotypes observed among E. faecalis isolated from the domestic products were the resistances to oxytetracycline (58.4%), dihydrostreptomycin (50.4%), and erythromycin (37.2%), and the gene tet(L) was detected in 46.0% of the isolates. The ABN model identified statistically significant associations between tet(L) and erm(B), tet(L) and ant(6)-Ia, ant(6)-Ia and aph(3’)-IIIa, and aph(3’)-IIIa and erm(B), which indicated that a multiple-resistance profile of tetracycline, erythromycin, streptomycin, and kanamycin is systematic rather than random. Conversely, the presence of tet(O) was only negatively associated with that of erm(B) and tet(M), which suggested that in the presence of tet(O), the aforementioned multiple resistance is unlikely to be observed. Such heterogeneity in linkages among genes that confer the same phenotypic resistance highlights the importance of incorporating genetic information when investigating the risk factors for the spread of resistance. The epidemiological factors that underlie the persistence of systematic multiple-resistance patterns warrant further investigations with appropriate adjustments for ecological and bacteriological factors.  相似文献   
47.
Primary neuroendocrine neoplasm of the liver is extremely rare in both humans and non‐human primates. The present report describes the clinical and pathological findings of an aged Japanese macaque (Macaca fuscata) with hepatic neuroendocrine carcinoma. To our knowledge, this is the first report of hepatic neuroendocrine neoplasm in macaques.  相似文献   
48.
Computational chemical analysis of Ru(II)‐Pheox–catalyzed highly enantioselective intramolecular cyclopropanation reactions was performed using density functional theory (DFT). In this study, cyclopropane ring–fused γ‐lactones, which are 5.8 kcal/mol more stable than the corresponding minor enantiomer, are obtained as the major product. The results of the calculations suggest that the enantioselectivity of the Ru(II)‐Pheox–catalyzed intramolecular cyclopropanation reaction is affected by the energy differences between the starting structures 5l and 5i . The reaction pathway was found to be a stepwise mechanism that proceeds through the formation of a metallacyclobutane intermediate. This is the first example of a computational chemical analysis of enantioselective control in an intramolecular carbene‐transfer reaction using C1‐symmetric catalysts.  相似文献   
49.
The Dam1 complex, also known as DASH complex, is the outer kinetochore protein complex of yeast that plays a crucial role in attachment of kinetochore to microtubule. The Dam1 complex is formed by at least nine proteins including Dam1p, Duo1p, Dad1p, Spc19p and Spc34p. In this study, domains of Spc34p that physically interact with other subunits of the complex were mapped using a high-throughput methodology. The method is a combination of two-hybrid screening of a random truncation library of the Spc34 gene and a unique PCR-based amplification that converge the selected DNA fragments to a few short fragments. Duo1p, Dam1p, Dad1p and Spc19p binding domains of Spc34p were mapped on M1-E59, M1-D47, M1-D47 or T207-E295 and S154-Q294, respectively. Most of the boundaries were located at less conserved regions among fungal Spc34p homologs, which is consistent with the boundaries of the putative secondary structures. The accuracy of the mapped domain boundaries was verified using truncated Spc34p polypeptides. The results and methodology we demonstrated herein not only shed light on the molecular architecture of the protein complex but also pave the road to the high-throughput identification of specific interaction domains of proteins whose possible interaction partners have been identified in genome-scale analyses.  相似文献   
50.
Fatty acids are common components of biological membranes that are known to play important roles in intracellular signaling. We report here a novel mechanism by which fatty acids regulate the degradation of tyrosinase, a critical enzyme associated with melanin biosynthesis in melanocytes and melanoma cells. Linoleic acid (unsaturated fatty acid, C18:2) accelerated the spontaneous degradation of tyrosinase, whereas palmitic acid (saturated fatty acid, C16:0) retarded the proteolysis. The linoleic acid-induced acceleration of tyrosinase degradation could be abrogated by inhibitors of proteasomes, the multicatalytic proteinase complexes that selectively degrade intracellular ubiquitinated proteins. Linoleic acid increased the ubiquitination of many cellular proteins, whereas palmitic acid decreased such ubiquitination, as compared with untreated controls, when a proteasome inhibitor was used to stabilize ubiquitinated proteins. Immunoprecipitation analysis also revealed that treatment with fatty acids modulated the ubiquitination of tyrosinase, i.e. linoleic acid increased the amount of ubiquitinated tyrosinase whereas, in contrast, palmitic acid decreased it. Furthermore, confocal immunomicroscopy showed that the colocalization of ubiquitin and tyrosinase was facilitated by linoleic acid and diminished by palmitic acid. Taken together, these data support the view that fatty acids regulate the ubiquitination of tyrosinase and are responsible for modulating the proteasomal degradation of tyrosinase. In broader terms, the function of the ubiquitin-proteasome pathway might be regulated physiologically, at least in part, by fatty acids within cellular membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号