首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3139篇
  免费   161篇
  3300篇
  2023年   6篇
  2022年   22篇
  2021年   50篇
  2020年   28篇
  2019年   30篇
  2018年   44篇
  2017年   47篇
  2016年   56篇
  2015年   110篇
  2014年   130篇
  2013年   196篇
  2012年   208篇
  2011年   222篇
  2010年   149篇
  2009年   138篇
  2008年   208篇
  2007年   213篇
  2006年   188篇
  2005年   169篇
  2004年   193篇
  2003年   185篇
  2002年   197篇
  2001年   30篇
  2000年   34篇
  1999年   42篇
  1998年   43篇
  1997年   33篇
  1996年   27篇
  1995年   34篇
  1994年   24篇
  1993年   34篇
  1992年   16篇
  1991年   20篇
  1990年   23篇
  1989年   22篇
  1988年   15篇
  1987年   10篇
  1986年   8篇
  1985年   15篇
  1984年   12篇
  1983年   8篇
  1982年   14篇
  1981年   8篇
  1980年   7篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1973年   3篇
排序方式: 共有3300条查询结果,搜索用时 15 毫秒
961.
A good correlation between 50% inhibitory concentration of hybrid liposomes (HL) composed of 90 mol% dimyristoylphosphatidylcholine and 10 mol% polyoxyethylene(n)dodecyl ether on the growth of human colon tumor (WiDr) cells, and membrane fluidity of HL was obtained. HL distinguished between WiDr and normal colon cells and then fused and accumulated into the membranes of WiDr cells leading to apoptosis.  相似文献   
962.
Cloning efficiency has not been dramatically improved after the first success of somatic cell nuclear transfer (SCNT) in sheep in 1997. The reasons for the low efficiency of SCNT embryos must be attributed to the insufficient reprogramming of the donor nucleus in ooplasm. It has been clarified that the methylation and acetylation status are disordered in SCNT embryos and the gene expression pattern is different and widely varied in SCNT embryos, compared with fertilized embryos. In this paper, we focused on the role of the donor nuclei in cloning efficiency, and discuss whether ooplasm can reprogram any nucleus.  相似文献   
963.
In this study, we investigate how measures of insulin secretion and other clinical information affect long-term glycemic control in patients with type 2 diabetes mellitus. Between October 2012 and June 2014, we monitored 202 diabetes patients who were admitted to the hospital of Asahi Life Foundation for glycemic control, as well as for training and education in diabetes management. We measured glycated hemoglobin (HbA1c) six months after discharge to assess disease management. In univariate analysis, fasting plasma C-peptide immunoreactivity (F-CPR) and pooled urine CPR (U-CPR) were significantly associated with HbA1c, in contrast to ΔCPR and C-peptide index (CPI). This association was strongly independent of most other patient variables. In exploratory factor analysis, five underlying factors, namely insulin resistance, aging, sex differences, insulin secretion, and glycemic control, represented patient characteristics. In particular, insulin secretion and resistance strongly influenced F-CPR, while insulin secretion affected U-CPR. In conclusion, the data indicate that among patients with type 2 diabetes mellitus, F-CPR and U-CPR may predict improved glycemic control six months after hospitalization.  相似文献   
964.
Umbilical cord blood (UCB) is a source of hematopoietic stem cells and other stem cells, and human UCB cells have been reported to contain transplantable hepatic progenitor cells. However, the fractions of UCB cells in which hepatic progenitor cells are rich remain to be clarified. In the present study, first, the fractionated cells by CD34, CD38, and c-kit were transplanted via portal vein of NOD/SCID mice, and albumin mRNA expression was examined in livers at 1 and 3 months posttransplantation. At 1 and 3 months, albumin mRNA expression in CD34+UCB cells-transplanted livers was higher than that in CD34- cells-transplanted livers. Albumin mRNA expression in CD34+CD38+ cells-transplanted livers was higher than that in CD34+CD38- cells-transplanted [corrected] liver at 1 month. However, it was much higher [corrected] in CD34+CD38- cell-transplanted livers at 3 months. Similar expression of albumin mRNA was obtained between CD34+CD38+c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, and between CD34+CD38-c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, respectively. Second, fluorescence in situ hybridization and immunohistochemistry were performed to examine whether UCB cells really transdifferentiated into hepatocytes or they only fused with mouse hepatocytes. In mouse liver sections, of 1.2% cells which had human chromosomes, 0.9% cells were due to cell fusion, whereas 0.3% cells were transdifferentiated into human hepatocytes. These results suggest that CD34+UCB cells are rich fractions in hepatic progenitor cells, and that transdifferentiation from UCB cells into hepatocytes as well as cell fusion simultaneously occur in this situation.  相似文献   
965.
Hepatic stellate cells (HSC), the key fibrogenic cells of the liver, transdifferentiate into myofibroblasts upon phagocytosis of apoptotic hepatocytes. Galectin-3, a β-galactoside-binding lectin, is a regulator of the phagocytic process. In this study, our aim was to study the mechanism by which extracellular galectin-3 modulates HSC phagocytosis and activation. The role of galectin-3 in engulfment was evaluated by phagocytosis and integrin binding assays in primary HSC. Galectin-3 expression was studied by real-time PCR and enzyme-linked immunosorbent assay, and in vivo studies were done in wild-type and galectin-3(-/-) mice. We found that HSC from galectin-3(-/-) mice displayed decreased phagocytic activity, expression of transforming growth factor-β1, and procollagen α1(I). Recombinant galectin-3 reversed this defect, suggesting that extracellular galectin-3 is required for HSC activation. Galectin-3 facilitated the α(v)β(3) heterodimer-dependent binding, indicating that galectin-3 modulates HSC phagocytosis via cross-linking this integrin and enhancing the tethering of apoptotic cells. Blocking integrin α(v)β(3) resulted in decreased phagocytosis. Galectin-3 expression and release were induced in active HSC engulfing apoptotic cells, and this was mediated by the nuclear factor-κB signaling. The upregulation of galectin-3 in active HSC was further confirmed in vivo in bile duct-ligated (BDL) rats. Galectin-3(-/-) mice displayed significantly decreased fibrosis, with reduced expression of α-smooth muscle actin and procollagen α1(I) following BDL. In summary, extracellular galectin-3 plays a key role in liver fibrosis by mediating HSC phagocytosis, activation, and subsequent autocrine and paracrine signaling by a feedforward mechanism.  相似文献   
966.
X-ray microprobe analysis was performed to investigate the changes of elemental concentrations around or on the membrane of the head, midpiece, and principal piece regions of individual fowl spermatozoa during maturation in the male reproductive tract and after storage in vitro at 4°C. The pattern of change of elemental concentrations during maturation and postejaculation was, in general, similar in the three different subcellular regions; i.e., concentrations of sodium, potassium, chlorine, and calcium decreased gradually during sperm passage through the male reproductive tract and after storage. Phosphorus concentration remained almost constant in the male tract and decreased gradually after storage. In contrast, magnesium, zinc, and copper concentrations showed an interesting pattern: concentrations increased significantly during maturation to a maximum at ejaculation and decreased again after storage. The ratios of sodium to potassium in the midpiece region showed patterns similar to those of magnesium, zinc, and copper concentrations.  相似文献   
967.
The mukB gene codes for a 177kDa protein, which might be a candidate for a force-generating enzyme in chromosome positioning in Escherichia coli. The mukB106 mutant produces normal-sized, anucleate cells and shows a temperature-sensitive colony formation. To Identify proteins interacting with the MukB protein, we isolated three multicopy suppressors (msmA, msmB, and msmC) to the temperature-sensitive colony formation of the mukB106 mutation. The msmA gene, which could not suppress the production of anucleate cells, was found to be identical to the dksA gene. The msmB and msmC genes suppressed the production of anucleate cells as well as the temperature-sensitive colony formation. However, none of them couid suppress both phenotypes in a mukB null mutation. DNA sequencing revealed that the msmB gene was identicai to the cspC gene and that the msmC gene had not been described before. A homology search revealed that the amino acid sequences of both MsmB and MsmC possessed high similarity to proteins containing the cold-shock domain, such as CspA of E. coliand the Y-box binding proteins of eukaryotes; this suggests that MsmB and MsmC might be DNA-binding proteins that recognize the CCAAT sequence. Hence, the msmB and msmC genes were renamed cspC and cspE, respectively. Possible mechanisms for suppression of the mukB106 mutation are discussed.  相似文献   
968.
The community structure of pink-colored microbial mats naturally occurring in a swine wastewater ditch was studied by culture-independent biomarker and molecular methods as well as by conventional cultivation methods. The wastewater in the ditch contained acetate and propionate as the major carbon nutrients. Thin-section electron microscopy revealed that the microbial mats were dominated by rod-shaped cells containing intracytoplasmic membranes of the lamellar type. Smaller numbers of oval cells with vesicular internal membranes were also found. Spectroscopic analyses of the cell extract from the biomats showed the presence of bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Ubiquinone-10 was detected as the major quinone. A clone library of the photosynthetic gene, pufM, constructed from the bulk DNA of the biomats showed that all of the clones were derived from members of the genera Rhodobacter and Rhodopseudomonas. The dominant phototrophic bacteria from the microbial mats were isolated by cultivation methods and identified as being of the genera Rhodobacter and Rhodopseudomonas by studying 16S rRNA and pufM gene sequence information. Experiments of oxygen uptake with lower fatty acids revealed that the freshly collected microbial mats and the Rhodopseudomonas isolates had a wider spectrum of carbon utilization and a higher affinity for acetate than did the Rhodobacter isolates. These results demonstrate that the microbial mats were dominated by the purple nonsulfur bacteria of the genera Rhodobacter and Rhodopseudomonas, and the bioavailability of lower fatty acids in wastewater is a key factor allowing the formation of visible microbial mats with these phototrophs.  相似文献   
969.

Background

Recent studies have revealed relative frequency and characteristic phenotype of two major causative factors for Silver-Russell syndrome (SRS), i.e. epimutation of the H19-differentially methylated region (DMR) and uniparental maternal disomy 7 (upd(7)mat), as well as multilocus methylation abnormalities and positive correlation between methylation index and body and placental sizes in H19-DMR epimutation. Furthermore, rare genomic alterations have been found in a few of patients with idiopathic SRS. Here, we performed molecular and clinical findings in 138 Japanese SRS patients, and examined these matters.

Methodology/Principal Findings

We identified H19-DMR epimutation in cases 1–43 (group 1), upd(7)mat in cases 44–52 (group 2), and neither H19-DMR epimutation nor upd(7)mat in cases 53–138 (group 3). Multilocus analysis revealed hyper- or hypomethylated DMRs in 2.4% of examined DMRs in group 1; in particular, an extremely hypomethylated ARHI-DMR was identified in case 13. Oligonucleotide array comparative genomic hybridization identified a ∼3.86 Mb deletion at chromosome 17q24 in case 73. Epigenotype-phenotype analysis revealed that group 1 had more reduced birth length and weight, more preserved birth occipitofrontal circumference (OFC), more frequent body asymmetry and brachydactyly, and less frequent speech delay than group 2. The degree of placental hypoplasia was similar between the two groups. In group 1, the methylation index for the H19-DMR was positively correlated with birth length and weight, present height and weight, and placental weight, but with neither birth nor present OFC.

Conclusions/Significance

The results are grossly consistent with the previously reported data, although the frequency of epimutations is lower in the Japanese SRS patients than in the Western European SRS patients. Furthermore, the results provide useful information regarding placental hypoplasia in SRS, clinical phenotypes of the hypomethylated ARHI-DMR, and underlying causative factors for idiopathic SRS.  相似文献   
970.
The slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase (DCT) in melanocytes. However, it is unknown whether the reduced DCT activity leads to a defect in the proliferation and differentiation of mouse melanocytes. To address this point, the proliferation and differentiation of neonatal melanocytes from Dct(slt)/Dct(slt) congenic mice in serum-free primary culture were investigated in detail. The proliferation of slaty epidermal melanoblasts/melanocytes in culture did not differ from that of wild-type mice. However, the differentiation was greatly inhibited. Tyrosinase (TYR) activity detected by dopa reaction as well as staining of DCT in slaty melanocytes was greatly reduced. The content of eumelanin in cultured slaty melanocytes was reduced, whereas the content of pheomelanin in media derived from cultured 7.5-day-old slaty melanocytes was greatly increased. The contents of eumelanin and pheomelanin in the neonatal slaty epidermis and dermis were reduced, except that the pheomelanin content in 3.5-day-old dermis was increased. These results suggest that the slaty mutation affects both eumelanin and pheomelanin synthesis in developmental stage-specific and skin site-specific manners, and, in addition, the gene controls the differentiation of melanocytes via the regulation of activity of TYR in addition to its own DCT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号