首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2802篇
  免费   141篇
  2943篇
  2023年   4篇
  2022年   18篇
  2021年   47篇
  2020年   24篇
  2019年   23篇
  2018年   40篇
  2017年   41篇
  2016年   56篇
  2015年   102篇
  2014年   124篇
  2013年   174篇
  2012年   183篇
  2011年   195篇
  2010年   138篇
  2009年   128篇
  2008年   191篇
  2007年   204篇
  2006年   167篇
  2005年   160篇
  2004年   177篇
  2003年   167篇
  2002年   186篇
  2001年   26篇
  2000年   20篇
  1999年   32篇
  1998年   36篇
  1997年   30篇
  1996年   21篇
  1995年   27篇
  1994年   17篇
  1993年   31篇
  1992年   8篇
  1991年   11篇
  1990年   13篇
  1989年   8篇
  1988年   10篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   10篇
  1983年   9篇
  1982年   13篇
  1981年   5篇
  1980年   7篇
  1978年   3篇
  1976年   3篇
  1975年   10篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
排序方式: 共有2943条查询结果,搜索用时 0 毫秒
61.
Ammonia has been shown to function as a morphogen at multiple steps during the development of the cellular slime mold Dictyostelium discoideum; however, it is largely unknown how intracellular ammonia levels are controlled. In the Dictyostelium genome, there are five genes that encode putative ammonium transporters: amtA, amtB, amtC, rhgA, and rhgB. Here, we show that AmtA regulates ammonia homeostasis during growth and development. We found that cells lacking amtA had increased levels of ammonia/ammonium, whereas their extracellular ammonia/ammonium levels were highly decreased. These results suggest that AmtA mediates the excretion of ammonium. In support of a role for AmtA in ammonia homeostasis, AmtA mRNA is expressed throughout the life cycle, and its expression level increases during development. Importantly, AmtA-mediated ammonia homeostasis is critical for many developmental processes. amtA(-) cells are more sensitive to NH(4)Cl than wild-type cells in inhibition of chemotaxis toward cyclic AMP and of formation of multicellular aggregates. Furthermore, even in the absence of exogenously added ammonia, we found that amtA(-) cells produced many small fruiting bodies and that the viability and germination of amtA(-) spores were dramatically compromised. Taken together, our data clearly demonstrate that AmtA regulates ammonia homeostasis and plays important roles in multiple developmental processes in Dictyostelium.  相似文献   
62.
63.
Primary neuroendocrine neoplasm of the liver is extremely rare in both humans and non‐human primates. The present report describes the clinical and pathological findings of an aged Japanese macaque (Macaca fuscata) with hepatic neuroendocrine carcinoma. To our knowledge, this is the first report of hepatic neuroendocrine neoplasm in macaques.  相似文献   
64.
Genome editing can introduce designed mutations into a target genomic site. Recent research has revealed that it can also induce various unintended events such as structural variations, small indels, and substitutions at, and in some cases, away from the target site. These rearrangements may result in confounding phenotypes in biomedical research samples and cause a concern in clinical or agricultural applications. However, current genotyping methods do not allow a comprehensive analysis of diverse mutations for phasing and mosaic variant detection. Here, we developed a genotyping method with an on-target site analysis software named Determine Allele mutations and Judge Intended genotype by Nanopore sequencer (DAJIN) that can automatically identify and classify both intended and unintended diverse mutations, including point mutations, deletions, inversions, and cis double knock-in at single-nucleotide resolution. Our approach with DAJIN can handle approximately 100 samples under different editing conditions in a single run. With its high versatility, scalability, and convenience, DAJIN-assisted multiplex genotyping may become a new standard for validating genome editing outcomes.

Genome editing can introduce designed mutations into a target genomic site, but also into unintended off-target sites. DAJIN, a novel nanopore sequencing data analysis tool, identifies and quantifies allele numbers and their mutation patterns, reporting consensus sequences and visualizing mutations in alleles at single-nucleotide resolution.  相似文献   
65.

Background

To date, only a small portion of the genetic variation for primary open-angle glaucoma (POAG), the major type of glaucoma, has been elucidated.

Methods and Principal Findings

We examined our two data sets of the genome-wide association studies (GWAS) derived from a total of 2,219 Japanese subjects. First, we performed a GWAS by analyzing 653,519 autosomal common single-nucleotide polymorphisms (SNPs) in 833 POAG patients and 686 controls. As a result, five variants that passed the Bonferroni correction were identified in CDKN2B-AS1 on chromosome 9p21.3, which was already reported to be a significant locus in the Caucasian population. Moreover, we combined the data set with our previous GWAS data set derived from 411 POAG patients and 289 controls by the Mantel-Haenszel test, and all of the combined variants showed stronger association with POAG (P<5.8×10−10). We then subdivided the case groups into two subtypes based on the value of intraocular pressure (IOP)—POAG with high IOP (high pressure glaucoma, HPG) and that with normal IOP (normal pressure glaucoma, NPG)—and performed the GWAS using the two data sets, as the prevalence of NPG in Japanese is much higher than in Caucasians. The results suggested that the variants from the same CDKN2B-AS1 locus were likely to be significant for NPG patients.

Conclusions and Significance

In this study, we successfully identified POAG-associated variants in the CDKN2B-AS1 locus using a Japanese population, i.e., variants originally reported as being associated with the Caucasian population. Although we cannot rule out that the significance could be due to the differences in sample size between HPG and NPG, the variants could be associated specifically with the vulnerability of the optic nerve to IOP, which is useful for investigating the etiology of glaucoma.  相似文献   
66.
Integrin αvβ3 plays a role in insulin-like growth factor-1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk). The specifics of the cross-talk are, however, unclear. In a current model, "ligand occupancy" of αvβ3 (i.e. the binding of extracellular matrix proteins) enhances signaling induced by IGF1 binding to IGF1R. We recently reported that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation. Consistently, the integrin binding-defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, but it still binds to IGF1R. Like αvβ3, integrin α6β4 is overexpressed in many cancers and is implicated in cancer progression. Here, we discovered that α6β4 directly bound to IGF1, but not to R36E/R37E. Grafting the β4 sequence WPNSDP (residues 167-172), which corresponds to the specificity loop of β3, to integrin β1 markedly enhanced IGF1 binding to β1, suggesting that the WPNSDP sequence is involved in IGF1 recognition. WT IGF1 induced α6β4-IGF1-IGF1R ternary complex formation, whereas R36E/R37E did not. When cells were attached to matrix, exogenous IGF1 or α6β4 expression had little or no effect on intracellular signaling. When cell-matrix adhesion was reduced (in poly(2-hydroxyethyl methacrylate-coated plates), IGF1 induced intracellular signaling and enhanced cell survival in an α6β4-dependent manner. Also IGF1 enhanced colony formation in soft agar in an α6β4-dependent manner. These results suggest that IGF binding to α6β4 plays a major role in IGF signaling in anchorage-independent conditions, which mimic the in vivo environment, and is a novel therapeutic target.  相似文献   
67.
68.
69.

Background

Although delayed sleep timing causes many socio-psycho-biological problems such as sleep loss, excessive daytime sleepiness, obesity, and impaired daytime neurocognitive performance in adults, there are insufficient data showing the clinical significance of a ‘night owl lifestyle’ in early life. This study examined the association between habitual delayed bedtime and sleep-related problems among community-dwelling 2-year-old children in Japan.

Methods

Parents/caregivers of 708 community-dwelling 2-year-old children in Nishitokyo City, Tokyo, participated in the study. The participants answered a questionnaire to evaluate their child’s sleep habits and sleep-related problems for the past 1 month.

Results

Of the 425 children for whom complete data were collected, 90 (21.2%) went to bed at 22:00 or later. Children with delayed bedtime showed significantly more irregular bedtime, delayed wake time, shorter total sleep time, and difficulty in initiating and terminating sleep. Although this relationship indicated the presence of sleep debt in children with delayed bedtime, sleep onset latency did not differ between children with earlier bedtime and those with delayed bedtime. Rather, delayed bedtime was significantly associated with bedtime resistance and problems in the morning even when adjusting for nighttime and daytime sleep time.

Conclusions

Even in 2-year-old children, delayed bedtime was associated with various sleep-related problems. The causal factors may include diminished homeostatic sleep drive due to prolonged daytime nap as well as diurnal preference (morning or night type) regulated by the biological clock.  相似文献   
70.
Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant''s defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants'' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号