首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2892篇
  免费   146篇
  2023年   3篇
  2022年   18篇
  2021年   43篇
  2020年   25篇
  2019年   21篇
  2018年   43篇
  2017年   41篇
  2016年   53篇
  2015年   97篇
  2014年   120篇
  2013年   174篇
  2012年   191篇
  2011年   197篇
  2010年   140篇
  2009年   129篇
  2008年   194篇
  2007年   210篇
  2006年   175篇
  2005年   168篇
  2004年   195篇
  2003年   184篇
  2002年   205篇
  2001年   34篇
  2000年   20篇
  1999年   31篇
  1998年   36篇
  1997年   31篇
  1996年   20篇
  1995年   27篇
  1994年   16篇
  1993年   31篇
  1992年   15篇
  1991年   14篇
  1990年   16篇
  1989年   15篇
  1988年   14篇
  1987年   10篇
  1986年   6篇
  1985年   11篇
  1984年   11篇
  1983年   9篇
  1982年   13篇
  1981年   4篇
  1980年   6篇
  1978年   3篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1960年   1篇
排序方式: 共有3038条查询结果,搜索用时 927 毫秒
991.
The survival and functional maintenance of vertebrate neurons depends on the availability of specific neurotrophic factors. We studied the influence of neurotrophic support on responses of dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin known to damage the nigrostriatal dopaminergic pathway in humans and other mammals. Treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine caused decreases in levels of Ret, a tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF) in the striatum, under the condition in which tyrosine hydroxylase was moderately decreased and the GDNF family receptor alpha1, another receptor of GDNF that is the ligand-binding subunit, were unaffected. Down-regulation of Ret was also observed in dopamine-producing PC12 cells undergoing apoptosis induced by rotenone, another toxic substance for dopaminergic neurons, while other cellular components were not affected. Ret was also extremely vulnerable to other apoptotic inducing conditions. Taken together, these results indicate that Ret, an important signal molecule in dopaminergic neurons, may be down-regulated in the early stages of neuronal degeneration caused by various neurotoxic substances, and may lead to reduced neurotrophic influences.  相似文献   
992.
Reverse genetics has been documented for influenza A, B, and Thogoto viruses belonging to the family Orthomyxoviridae. We report here the reverse genetics of influenza C virus, another member of this family. The seven viral RNA (vRNA) segments of C/Ann Arbor/1/50 were expressed in 293T cells from cloned cDNAs, together with nine influenza C virus proteins. At 48 h posttransfection, the infectious titer of the culture supernatant was determined to be 2.51 x 10(3) 50% egg infectious doses/ml, which is lower than the number of influenza C virus-like particles (VLPs) (10(6)/ml) generated using the same system. By generating influenza C VLPs containing a given vRNA segment, we showed that each of the vRNA segments was similarly synthesized in the plasmid-transfected cells but that some segments were less efficiently incorporated into the VLPs. This finding leads us to speculate that the differences in incorporation efficiency into VLPs between segments might be a reason for the inefficient production of infectious viruses. Second, we generated a mutant recombinant virus, rMG96A, which possesses an Ala-->Thr mutation at residue 24 of the M1 protein, a substitution demonstrated to be involved in the morphology (filamentous or spherical) of the influenza C VLPs. As expected, rMG96A exhibited a spherical morphology, whereas recombinant wild-type of C/Ann Arbor/1/50, rWT, exhibited a mainly filamentous morphology. Membrane flotation analysis of the cells infected with rWT or rMG96A revealed a difference in the ratio of membrane-associated M1 proteins, suggesting that the affinity of M1 protein to the cell membrane is a determinant for virion morphology.  相似文献   
993.
994.
995.
996.
997.
Estrogen prevents osteoporotic bone loss by attenuating bone resorption; however, the molecular basis for this is unknown. Here, we report a critical role for the osteoclastic estrogen receptor alpha (ERalpha) in mediating estrogen-dependent bone maintenance in female mice. We selectively ablated ERalpha in differentiated osteoclasts (ERalpha(DeltaOc/DeltaOc)) and found that ERalpha(DeltaOc/DeltaOc) females, but not males, exhibited trabecular bone loss, similar to the osteoporotic bone phenotype in postmenopausal women. Further, we show that estrogen induced apoptosis and upregulation of Fas ligand (FasL) expression in osteoclasts of the trabecular bones of WT but not ERalpha(DeltaOc/DeltaOc) mice. The expression of ERalpha was also required for the induction of apoptosis by tamoxifen and estrogen in cultured osteoclasts. Our results support a model in which estrogen regulates the life span of mature osteoclasts via the induction of the Fas/FasL system, thereby providing an explanation for the osteoprotective function of estrogen as well as SERMs.  相似文献   
998.
999.
We have recently reported that inhibition of transforming growth factor (TGF)-beta in the brain reduced fat-related energy substrates concentrations in response to exercise. We investigated the relevance between the mobilization of fat-related energy substrates (nonesterified fatty acid and ketone bodies) during exercise and the effects of TGF-beta in the brain. Low-intensity exercise was simulated by contraction of the hindlimbs, induced by electrical stimulation at 2 Hz in anesthetized rats (Sim-Ex). As with actual exercise, it was confirmed that mobilization of carbohydrate-related energy substrates (glucose and lactic acid) occurred immediately after the onset of Sim-Ex, and mobilization of fat-related energy substrates followed thereafter. The timing of mobilization of fat-related substrates corresponded to that of the increase in TGF-beta in cerebrospinal fluid (CSF) in Sim-Ex. The level of TGF-beta in CSF significantly increased after 10 min of Sim-Ex and remained elevated until 30 min of Sim-Ex. Intracisternal administration of TGF-beta caused rapid mobilization of fat-related energy substrates. Meanwhile, there were no effects on the changes in carbohydrate-related substrates. The levels of catecholamines were slightly elevated after TGF-beta administration, and, although not significantly in statistical terms, we consider that at least a part of TGF-beta signal was transducted via the sympathetic nervous system because of these increases. These data indicate that TGF-beta in the brain is closely related to the mobilization of fat-related energy substrates during low-intensity exercise. We hypothesized that the central nervous system plays a role in the regulation of energy metabolism during low-intensity exercise and this may be mediated by TGF-beta.  相似文献   
1000.
Arterial stiffness is higher in strength-trained humans and lower in endurance-trained humans. However, the mechanisms underlying these different adaptations are unclear. Vascular endothelium-derived factors, such as endothelin-1 (ET-1) and nitric oxide (NO), play an important role in the regulation of vascular tonus. We hypothesized that endogenous ET-1 and NO participate in the adaptation of arterial stiffness in different types of exercise training. The purpose of this study was to investigate plasma ET-1 and NO concentrations and arterial stiffness in strength- and endurance-trained men. Young strength-trained athletes (SA; n = 11), endurance-trained athletes (EA; n = 12), and sedentary control men (C; n = 12) participated in this study. Maximal handgrip strength in SA and maximal oxygen uptake in EA were markedly greater than in C. Aortic pulse-wave velocity, which is an established index of arterial stiffness, was higher in SA and lower in EA than in C. Additionally, we measured systemic arterial compliance (SAC) using carotid artery applanation tonometry and Doppler echocardiography, because arterial stiffness is a primary determinant of the compliance. SAC was lower in SA and higher in EA compared with that in C. Plasma ET-1 concentrations were higher in SA compared with C and EA. We did not find significant differences in plasma NO concentrations (measured as the stable end product of NO, i.e., nitrite/nitrate). The relationships of plasma ET-1 concentrations to aortic pulse-wave velocity and SAC were linear. These results suggest that differences in endogenous ET-1 may partly participate in the mechanism underlying different adaptations of arterial stiffness in strength- and endurance-trained men.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号