首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2962篇
  免费   143篇
  3105篇
  2022年   20篇
  2021年   46篇
  2020年   26篇
  2019年   22篇
  2018年   41篇
  2017年   41篇
  2016年   54篇
  2015年   98篇
  2014年   125篇
  2013年   178篇
  2012年   193篇
  2011年   201篇
  2010年   143篇
  2009年   134篇
  2008年   195篇
  2007年   208篇
  2006年   176篇
  2005年   164篇
  2004年   192篇
  2003年   168篇
  2002年   191篇
  2001年   23篇
  2000年   27篇
  1999年   41篇
  1998年   37篇
  1997年   34篇
  1996年   23篇
  1995年   27篇
  1994年   20篇
  1993年   33篇
  1992年   20篇
  1991年   19篇
  1990年   15篇
  1989年   15篇
  1988年   14篇
  1987年   13篇
  1986年   6篇
  1985年   11篇
  1984年   12篇
  1983年   12篇
  1982年   15篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1978年   7篇
  1977年   7篇
  1976年   5篇
  1975年   6篇
  1974年   5篇
  1973年   5篇
排序方式: 共有3105条查询结果,搜索用时 15 毫秒
91.
To gain insight into the mechanistic features for aromatase inactivation by the typical suicide substrates, androsta-1,4-diene-3,17-dione (ADD, 1) and its 6-ene derivative 2, we synthesized 19-substituted (methyl and halogeno) ADD and 1,4,6-triene derivatives 8 and 10 along with 4,6-diene derivatives 9 and tested for their ability to inhibit aromatase in human placental microsomes as well as their ability to serve as a substrate for the enzyme. 19-Methyl-substituted steroids were the most powerful competitive inhibitors of aromatase (Ki: 8.2–40 nM) in each series. Among the 19-substituted inhibitors examined, 19-chloro-ADD and its 6-ene derivatives (7b and 9b) inactivated aromatase in a time-dependent manner in the presence of NADPH in air while the other ones did not. The time-dependent inactivation was blocked by the substrate AD and required NADPH. Only the time-dependent inactivators 7b and 9b in series of 1,4-diene and 1,4,6-triene steroids as well as all of 4,6-diene steroids 9, except for the methyl compound 9a, served as a substrate for aromatase to yield estradiol and/or its 6-ene estradiol with lower conversion rates compared to the corresponding parent steroids 1,4-diene, 1,4,6-triene and 4,6-diene derivatives. The present findings strongly suggest that the aromatase reaction, 19-oxygenation, at least in part, would be involved in the time-dependent inactivation of aromatase by the suicide substrates 1 and 2, where the 19-substitutent would play a critical role in the aromatase reaction probably though steric and electronic reasons.  相似文献   
92.
Naturally spawned eggs of the hydrozoan jellyfish Cladonema pacificum are arrested at G1-like pronuclear stage until fertilization. Fertilized eggs of Cladonema undergo a series of post-fertilization events, including loss of sperm-attracting ability, expression of adhesive materials on the egg surface, and initiation of cell cycle leading to DNA synthesis and cleavage. Here, we investigate whether these events are regulated by changes in intracellular Ca2+ concentration and mitogen-activated protein kinase (MAP kinase) activity in Cladonema eggs. We found that MAP kinase is maintained in the phosphorylated form in unfertilized eggs. Initiation of sperm-induced Ca2+ increase, which is the first sign of fertilization, was immediately followed by MAP kinase dephosphorylation within a few minutes of fertilization. The fertilized eggs typically stopped sperm attraction by an additional 5 min and became sticky around this time. They further underwent cytokinesis yielding 2-cell embryos at approximately 1 h post-fertilization, which was preceded by DNA synthesis evidenced by BrdU incorporation into the nuclei. Injection of inositol 1,4,5-trisphosphate (IP3) into unfertilized eggs, which produced a Ca2+ increase similar to that seen at fertilization, triggered MAP kinase dephosphorylation and the above post-fertilization events without insemination. Conversely, injection of BAPTA/Ca2+ into fertilized eggs at approximately 10 s after the initiation of Ca2+ increase immediately lowered the elevating Ca2+ level and inhibited the subsequent post-fertilization events. Treatment with U0126, an inhibitor of MAP kinase kinase (MEK), triggered the post-fertilization events in unfertilized eggs, where MAP kinase dephosphorylation but not Ca2+ increase was generated. Conversely, preinjection of the glutathione S-transferase (GST) fusion protein of MAP kinase kinase kinase (Mos), which maintained the phosphorylated state of MAP kinase, blocked the post-fertilization events in fertilized eggs without preventing a Ca2+ increase. These results strongly suggest that all of the three post-fertilization events, cessation of sperm attraction, expression of surface adhesion, and progression of cell cycle, lie downstream of MAP kinase dephosphorylation that is triggered by a Ca2+ increase.  相似文献   
93.

Background

To date, only a small portion of the genetic variation for primary open-angle glaucoma (POAG), the major type of glaucoma, has been elucidated.

Methods and Principal Findings

We examined our two data sets of the genome-wide association studies (GWAS) derived from a total of 2,219 Japanese subjects. First, we performed a GWAS by analyzing 653,519 autosomal common single-nucleotide polymorphisms (SNPs) in 833 POAG patients and 686 controls. As a result, five variants that passed the Bonferroni correction were identified in CDKN2B-AS1 on chromosome 9p21.3, which was already reported to be a significant locus in the Caucasian population. Moreover, we combined the data set with our previous GWAS data set derived from 411 POAG patients and 289 controls by the Mantel-Haenszel test, and all of the combined variants showed stronger association with POAG (P<5.8×10−10). We then subdivided the case groups into two subtypes based on the value of intraocular pressure (IOP)—POAG with high IOP (high pressure glaucoma, HPG) and that with normal IOP (normal pressure glaucoma, NPG)—and performed the GWAS using the two data sets, as the prevalence of NPG in Japanese is much higher than in Caucasians. The results suggested that the variants from the same CDKN2B-AS1 locus were likely to be significant for NPG patients.

Conclusions and Significance

In this study, we successfully identified POAG-associated variants in the CDKN2B-AS1 locus using a Japanese population, i.e., variants originally reported as being associated with the Caucasian population. Although we cannot rule out that the significance could be due to the differences in sample size between HPG and NPG, the variants could be associated specifically with the vulnerability of the optic nerve to IOP, which is useful for investigating the etiology of glaucoma.  相似文献   
94.
Platelet-derived growth factor (PDGF) is a potent mitogen. Extensive in vivo studies of PDGF and its receptor (PDGFR) genes have reported that PDGF plays an important role in embryogenesis and development of the central nervous system (CNS). Furthermore, PDGF and the β subunit of the PDGF receptor (PDGFR-β) have been reported to be associated with schizophrenia and autism. However, no study has reported on the effects of PDGF deletion on mice behavior. Here we generated novel mutant mice (PDGFR-β KO) in which PDGFR-β was conditionally deleted in CNS neurons using the Cre/loxP system. Mice without the Cre transgene but with floxed PDGFR-β were used as controls. Both groups of mice reached adulthood without any apparent anatomical defects. These mice were further examined by conducting several behavioral tests for spatial memory, social interaction, conditioning, prepulse inhibition, and forced swimming. The test results indicated that the PDGFR-β KO mice show deficits in all of these areas. Furthermore, an immunohistochemical study of the PDGFR-β KO mice brain indicated that the number of parvalbumin (calcium-binding protein)-positive (i.e., putatively γ-aminobutyric acid-ergic) neurons was low in the amygdala, hippocampus, and medial prefrontal cortex. Neurophysiological studies indicated that sensory-evoked gamma oscillation was low in the PDGFR-β KO mice, consistent with the observed reduction in the number of parvalbumin-positive neurons. These results suggest that PDGFR-β plays an important role in cognitive and socioemotional functions, and that deficits in this receptor may partly underlie the cognitive and socioemotional deficits observed in schizophrenic and autistic patients.  相似文献   
95.
96.
11β-hydroxysteroid dehydrogenase (HSD11B) catalyzes the interconversion between active and inactive glucocorticoid, and is known to exist as two distinct isozymes: HSD11B1 and HSD11B2. A third HSD11B isozyme, HSD11B1L (SCDR10b), has recently been identified. Human HSD11B1L, which was characterized as a unidirectional NADP+-dependent cortisol dehydrogenase, appears to be specifically expressed in the brain. We previously reported that HSD11B1 and abundant HSD11B2 isozymes are expressed in neonatal pig testis and the Km for cortisol of NADP+-dependent dehydrogenase activity of testicular microsomes obviously differs from the same activity catalyzed by HSD11B1 from pig liver microsomes. Therefore, we hypothesized that the neonatal pig testis also expresses the third type of HSD11B isozyme, and we herein examined further evidence regarding the expression of HSD11B1L. (1) The inhibitory effects of gossypol and glycyrrhetinic acid on pig testicular microsomal NADP+-dependent cortisol dehydrogenase activity was clearly different from that of pig liver microsomes. (2) A highly conserved human HSD11B1L sequence was observed by RT-PCR in a pig testicular cDNA library. (3) mRNA, which contains the amplified sequence, was evaluated by real-time PCR and was most strongly expressed in pig brain, and at almost the same levels in the kidney as in the testis, but at lower levels in the liver. Based on these results, neonatal pig testis appears to express glycyrrhetinic acid-resistant HSD11B1L as a third HSD11B isozyme, and it may play a physiologically important role in cooperation with the abundantly expressed HSD11B2 isozyme in order to prevent Leydig cell apoptosis or GC-mediated suppression of testosterone production induced by high concentrations of activated GC in neonatal pig testis.  相似文献   
97.
In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20–60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes.  相似文献   
98.
Tom1 (target of Myb1) is a protein of unknown function. Tom1 and its relative Tom1L1 have an N-terminal VHS (Vps27p/Hrs/Stam) domain followed by a GAT (GGA and Tom1) domain, both of which are also found in the GGA (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor-binding protein) family of proteins. Although the VHS and GAT domains of GGA proteins bind to transmembrane cargo proteins and the small GTPase ADP-ribosylation factor, respectively, the VHS and GAT domains of Tom1 are unable to interact with these proteins. In this study, we show that the GAT domains of Tom1 and Tom1L1 interact with ubiquitin and Tollip (Toll-interacting protein). Ubiquitin bound the GAT domains of Tom1, Tom1L1, and GGA proteins, whereas Tollip interacted specifically with Tom1 and Tom1L1. Ubiquitin and Tollip bound to an overlapping region of the Tom1-GAT domain in a mutually exclusive manner. Tom1 was predominantly cytosolic when expressed in cells. On the other hand, Tollip was localized on early endosomes and recruited Tom1 and ubiquitinated proteins. These observations suggest that Tollip and Tom1 form a complex and regulate endosomal trafficking of ubiquitinated proteins.  相似文献   
99.
GGAs (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor (ARF)-binding proteins) are a family of monomeric adaptor proteins involved in membrane trafficking from the trans-Golgi network to endosomes. The GAT (GGA and Tom1) domains of GGAs have previously been shown to interact with GTP-bound ARF and to be crucial for membrane recruitment of GGAs. Here we show that the C-terminal subdomain of the GAT domain, which is distinct from the N-terminal GAT subdomain responsible for ARF binding, can bind ubiquitin. The binding is mediated by interactions between residues on one side of the alpha3 helix of the GAT domain and those on the so-called Ile-44 surface patch of ubiquitin. The binding of the GAT domain to ubiquitin can be enhanced by the presence of a GTP-bound form of ARF. Furthermore, GGA itself is ubiquitinated in a manner dependent on the GAT-ubiquitin interaction. These results delineate the molecular basis for the interaction between ubiquitin and GAT and suggest that GGA-mediated trafficking is regulated by the ubiquitin system as endosomal trafficking mediated by other ubiquitin-binding proteins.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号