首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3456篇
  免费   183篇
  3639篇
  2023年   8篇
  2022年   28篇
  2021年   59篇
  2020年   35篇
  2019年   33篇
  2018年   67篇
  2017年   51篇
  2016年   78篇
  2015年   129篇
  2014年   163篇
  2013年   245篇
  2012年   238篇
  2011年   244篇
  2010年   168篇
  2009年   138篇
  2008年   213篇
  2007年   232篇
  2006年   196篇
  2005年   182篇
  2004年   211篇
  2003年   187篇
  2002年   210篇
  2001年   35篇
  2000年   29篇
  1999年   40篇
  1998年   46篇
  1997年   33篇
  1996年   24篇
  1995年   27篇
  1994年   20篇
  1993年   36篇
  1992年   16篇
  1991年   24篇
  1990年   17篇
  1989年   14篇
  1988年   13篇
  1987年   13篇
  1986年   13篇
  1985年   15篇
  1984年   18篇
  1983年   11篇
  1982年   13篇
  1981年   5篇
  1980年   7篇
  1979年   6篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1973年   4篇
  1967年   5篇
排序方式: 共有3639条查询结果,搜索用时 46 毫秒
11.
Phosphoserine phosphatase (PSP) catalyzes the dephosphorylation of phosphoserine to serine and inorganic phosphate. PSPs, which have been found in all three domains of life, belong to the haloacid dehalogenase-like hydrolase superfamily. However, certain organisms, particularly bacteria, lack a classical PSP gene, although they appear to possess a functional phosphoserine synthetic pathway. The apparent lack of a PSP ortholog in Hydrogenobacter thermophilus, an obligately chemolithoautotrophic and thermophilic bacterium, represented a missing link in serine anabolism because our previous study suggested that serine should be synthesized from phosphoserine. Here, we detected PSP activity in cell-free extracts of H. thermophilus and purified two proteins with PSP activity. Surprisingly, these proteins belonged to the histidine phosphatase superfamily and had been annotated as cofactor-dependent phosphoglycerate mutase (dPGM). However, because they possessed neither mutase activity nor the residues important for the activity, we defined these proteins as novel-type PSPs. Considering the strict substrate specificity toward l-phosphoserine, kinetic parameters, and PSP activity levels in cell-free extracts, these proteins were strongly suggested to function as PSPs in vivo. We also detected PSP activity from "dPGM-like" proteins of Thermus thermophilus and Arabidopsis thaliana, suggesting that PSP activity catalyzed by dPGM-like proteins may be distributed among a broad range of organisms. In fact, a number of bacterial genera, including Firmicutes and Cyanobacteria, were proposed to be strong candidates for possessing this novel type of PSP. These findings will help to identify the missing link in serine anabolism.  相似文献   
12.
Jasminum odoratissimum is a Madeira and Canary Islands endemic showing classic heterostyly, i.e. with long-styled flowers with anthers at a low level in the corolla tube and short-styled flowers with anthers at a high level in the corolla tube. Short-styled flowers have large pollen, whereas long-styled flowers have small pollen. The two types are present in equal frequencies in the population.  相似文献   
13.
Madagascar is home to 208 indigenous palm species, almost all of them endemic and >80% of which are endangered. We undertook complete population census and sampling for genetic analysis of a relatively recently discovered giant fan palm, the Critically Endangered Tahina spectablis in 2008 and 2016. Our 2016 study included newly discovered populations and added to our genetic study. We incorporated these new populations into species distribution niche model (SDM) and projected these onto maps of the region. We developed population matrix models based on observed demographic data to model population change and predict the species vulnerability to extinction by undertaking population viability analysis (PVA). We investigated the potential conservation value of reintroduced planted populations within the species potential suitable habitat. We found that the population studied in 2008 had grown in size due to seedling regeneration but had declined in the number of reproductively mature plants, and we were able to estimate that the species reproduces and dies after approximately 70 years. Our models suggest that if the habitat where it resides continues to be protected the species is unlikely to go extinct due to inherent population decline and that it will likely experience significant population growth after approximately 80 years due to the reproductive and life cycle attributes of the species. The newly discovered populations contain more genetic diversity than the first discovered southern population which is genetically depauperate. The species appears to demonstrate a pattern of dispersal leading to isolated founder plants which may eventually lead to population development depending on local establishment opportunities. The conservation efforts currently put in place including the reintroduction of plants within the species potential suitable habitat if maintained are thought likely to enable the species to sustain itself but it remains vulnerable to anthropogenic impacts.  相似文献   
14.
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. The autosomal dominant form of this disease is caused by a polyalanine expansion from 10 to 12-17 residues, located at the N-terminus of the poly(A)-binding protein nuclear 1 (PABPN1). A distinct pathological hallmark of OPMD is the presence of filamentous intranuclear aggregates in patients' skeletal muscle cells. Wildtype PABPN1 protein is expressed ubiquitously and was shown to be mostly concentrated in discrete nuclear domains called 'speckles'. Using an established cell- culture model, we show that most mutant PABPN1- positive (alanine expanded form) intranuclear aggregates are structures distinct from intranuclear speckles. In contrast, the promyelocytic leukaemia protein, a major component of nuclear bodies, strongly colocalized to intranuclear aggregates of mutant PABPN1. Wildtype PABPN1 can freely shuttle between the nucleus and cytoplasm. We determined whether the nuclear environment is necessary for mutant PABPN1 inclusion formation and cellular toxicity. This was achieved by inactivating the mutant PABPN1 nuclear localization signal and by generating full-length mutant PABPN1 fused to a strong nuclear export sequence. A green fluorescence protein tag inserted at the N-terminus of both wildtype PABPN1 (ala10) and mutant PABPN1 (ala17) proteins allowed us to visualize their subcellular localization. Targeting mutant PABPN1 to the cytoplasm resulted in a significant suppression of both intranuclear aggregates formation and cellular toxicity, two histological consequences of OPMD. Our results indicate that the nuclear localization of mutant PABPN1 is crucial to OPMD pathogenesis.  相似文献   
15.
Beckwith-Wiedemann syndrome (BWS) is an imprinting-related human disease that is characterized by macrosomia, macroglossia, abdominal wall defects, and variable minor features. BWS is caused by several genetic/epigenetic alterations, such as loss of methylation at KvDMR1, gain of methylation at H19-DMR, paternal uniparental disomy of chromosome 11, CDKN1C mutations, and structural abnormalities of chromosome 11. CDKN1C is an imprinted gene with maternal preferential expression, encoding for a cyclin-dependent kinase (CDK) inhibitor. Mutations in CDKN1C are found in 40 % of familial BWS cases with dominant maternal transmission and in ~5 % of sporadic cases. In this study, we searched for CDKN1C mutations in 37 BWS cases that had no evidence for other alterations. We found five mutations—four novel and one known—from a total of six patients. Four were maternally inherited and one was a de novo mutation. Two frame-shift mutations and one nonsense mutation abolished the QT domain, containing a PCNA-binding domain and a nuclear localization signal. Two missense mutations occurred in the CDK inhibitory domain, diminishing its inhibitory function. The above-mentioned mutations were predicted by in silico analysis to lead to loss of function; therefore, we strongly suspect that such anomalies are causative in the etiology of BWS.  相似文献   
16.
In order to elucidate the factors affecting the genetic diversity of Quercus serrata in secondary forests in mountainous regions, we evaluated the level and distribution of genetic variation within and between 15 populations using seven microsatellite markers. The populations were at altitudes ranging from 140 to 1200 m in and around the Chichibu Mountains, central Japan.The expected heterozygosity (HE) ranged from 0.766 to 0.837. The two populations that exhibited the highest and the second highest values of HE are located beside a river and a lake, respectively. The two populations exhibiting the lowest and the second lowest values of HE are, in contrast, located on a summit and a ridge. The observed heterozygosity (HO) varied between 0.638 and 0.844, and the value of this variable was also higher for the populations beside water than those on summits or ridges. The soils at the waterside are wet, in contrast to those on ridges and summits, which tend to be shallow and subject to rapid desiccation. These results suggest that a lack of soil moisture is likely to inhibit the development and regeneration of Q. serrata, and that genetic diversity is reduced in arid areas. The genetic differentiation was low (FST=0.013) among the investigated populations, although all five populations in Yamanashi prefecture clustered together in an UPGMA tree. According to a multiple regression analysis, there was no significant isolation by distance among the populations along either the horizontal or vertical axes. Therefore, genetic variation within populations is affected by topography, but variation between populations is hardly affected by geographical factors. Furthermore, the results of this study suggest two conclusions. First, that altitude is not always a useful variable when estimating the genetic diversity of plant populations in mountainous regions. Second, that genetic diversity can vary even among the undifferentiated plant populations in small areas like the Chichibu Mountains.  相似文献   
17.
The present study demonstrated that demecolcine treatment for at least 30 min produces a membrane protrusion in metaphase II-stage bovine oocytes. The maternal chromosome mass is condensed within the protrusion, which makes it easy to remove the maternal chromosomes for nuclear transfer (NT). Maturation promoting factor activity, but not mitogen-activated protein kinase activity, increased up to 30% in oocytes during demecolcine treatment. One normal healthy calf was obtained after transfer of four NT blastocysts produced following demecolcine treatment. Demecolcine treatment did not increase the potential of NT oocytes to develop into blastocysts. The present study demonstrated that chemically-assisted removal of chromosomes is effective for bovine cloning.  相似文献   
18.
Mulla  Aziz J.  Lin  Che-Hung  Takahashi  Shunichi  Nozawa  Yoko 《Coral reefs (Online)》2021,40(4):1297-1306
Coral Reefs - Behaviour can have profound consequences for the dispersal potential of an organism. In the marine environment, larvae rely heavily on oceanic currents to migrate from one area to...  相似文献   
19.
Many human proteins have homopolymeric amino acid (HPAA) tracts, although the physiological significance or cellular effects of their presence is poorly understood. We previously reported that 20 kinds of HPAAs show characteristic intracellular localization and that among those, hydrophobic HPAAs aggregate strongly and form high molecular weight proteins when expressed in cultured cells. In this study, we investigated the cytotoxicity of 20 kinds of HPAAs. HPAA tracts of approximately 30 residues fused to the C-terminus of YFP were expressed in COS-7 cells. Cells expressing homopolymeric-Cys, -Ile, -Leu, and -Val showed low viability in Trypan Blue assay. Caspase-3 activity, which is usually upregulated in dying cells, was determined by measuring the cleavage of the peptide substrate Ac-DEVD-MCA and by detecting the cleaved active form of the caspase-3 by Western blotting. The activity of caspase-3 was drastically elevated in cells expressing those HPAAs which showed low viability in Trypan Blue assay. Interestingly, it was found that there is a correlation between the hydrophobicity of a single amino acid and the cytotoxicity of the corresponding HPAA as a homopolymer. These results indicate that the hydrophobicity of HPAAs may cause cytotoxicity.  相似文献   
20.
We examined hepatic cytochrome P450 (CYP)-mediated interactions between Ginkgo biloba extract (GBE) and tolbutamide, an oral anti-diabetic agent, in aged and young rats. Tolbutamide was orally given to rats with or without GBE treatment, and time-dependent changes in blood glucose were monitored. The basal activity of six CYP subtypes in liver was lower in the aged rats than in the young rats, while the inductions of these enzymes by 5 day pretreatment of 0.1% GBE diet were more in the aged rats. Further, the pretreatment of GBE significantly attenuated the hypoglycemic action of tolbutamide in the aged rats, corresponding well to the enhanced activity of (S)-warfarin 7-hydroxylase, which is responsible for CYP2C9 subtype, a major isoform metabolizing tolbutamide. In contrast, the simultaneous administration of GBE with tolbutamide potentiated the hypoglycemic action of this drug. The in vitro experiments revealed that GBE competitively inhibited the metabolism of tolbutamide by (S)-warfarin 7-hydroxylase in the rat liver microsomes. In the young rats, the 5 day pretreatment with GBE significantly attenuated the hypoglycemic action of tolbutamide, but a simultaneous treatment had little influence on the tolbutamide effect. In conclusion, the present study has shown that the simultaneous and continuous intake of GBE significantly affects the hypoglycemic action of tolbutamide, possibly via a hepatic CYP enzyme-mediated mechanism, particularly in the aged rats. Therefore, it is anticipated that the intake of GBE as a dietary supplement with therapeutic drugs should be cautious, particularly in elderly people.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号