首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10034篇
  免费   690篇
  2021年   99篇
  2020年   54篇
  2019年   74篇
  2018年   134篇
  2017年   94篇
  2016年   163篇
  2015年   222篇
  2014年   308篇
  2013年   528篇
  2012年   469篇
  2011年   530篇
  2010年   281篇
  2009年   289篇
  2008年   502篇
  2007年   468篇
  2006年   447篇
  2005年   446篇
  2004年   461篇
  2003年   420篇
  2002年   452篇
  2001年   365篇
  2000年   372篇
  1999年   298篇
  1998年   144篇
  1997年   102篇
  1996年   109篇
  1995年   115篇
  1994年   84篇
  1993年   76篇
  1992年   227篇
  1991年   239篇
  1990年   203篇
  1989年   208篇
  1988年   160篇
  1987年   143篇
  1986年   123篇
  1985年   133篇
  1984年   113篇
  1983年   113篇
  1982年   97篇
  1981年   72篇
  1980年   50篇
  1979年   78篇
  1978年   83篇
  1977年   58篇
  1976年   74篇
  1975年   57篇
  1974年   41篇
  1973年   59篇
  1971年   44篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
982.
The DPB11 gene, which genetically interacts with DNA polymerase II (), one of three replicative DNA polymerases, is required for DNA replication and the S phase checkpoint in Saccharomyces cerevisiae. To identify factors interacting with Dbp11, we have isolated sld (synthetically lethal with dpb11-1) mutations which fall into six complementation groups (sld1 to -6). In this study, we characterized SLD2, encoding an essential 52-kDa protein. High-copy SLD2 suppressed the thermosensitive growth defect caused by dpb11-1. Conversely, high-copy DPB11 suppressed the temperature-sensitive growth defect caused by sld2-6. The interaction between Sld2 and Dpb11 was detected in a two-hybrid assay. This interaction was evident at 25°C but not at 34°C when Sld2-6 or Dpb11-1 replaced its wild-type protein. No interaction between Sld2-6 and Dpb11-1 could be detected even at 25°C. Immunoprecipitation experiments confirmed that Dpb11 physically interacts with Sld2. sld2-6 cells were defective in DNA replication at the restrictive temperature, as were dpb11-1 cells. Further, in dpb11-1 and sld2-6 cells, the bubble-shaped replication intermediates formed in the region of the autonomously replicating sequence reduced quickly after a temperature shift. These results strongly suggest the involvement of the Dpb11-Sld2 complex in a step close to the initiation of DNA replication.  相似文献   
983.
We synthesized a novel series of phenylindole (PI) derivatives and evaluated their biological activities as probes for imaging Aβ plaques in vivo. The affinity for Aβ plaques was assessed by an in vitro-binding assay using pre-formed synthetic Aβ aggregates. 2-Phenyl-1H-indole (2-PI) derivatives showed high affinity for Aβ42 aggregates with Ki values ranging from 4 to 32 nM. 2-PI derivatives clearly stained Aβ plaques in an animal model of AD. In biodistribution experiments using normal mice, 2-PI derivatives displayed sufficient uptake for imaging, ranging from 1.1% to 2.6% ID/g. Although additional modifications are necessary to improve uptake by and clearance from the brain, 2-PI derivatives may be useful as a backbone structure to develop novel Aβ imaging agents.  相似文献   
984.
Secondary bile acid-producing bacteria were isolated from human feces to improve our appreciation of the functional diversity and redundancy of the intestinal microbiota. In total, 619 bacterial colonies were isolated using a nutrient-poor agar medium and the level of secondary bile acid formation was examined in each by a liquid culture, followed by thin-layer chromatography. Of five strains analyzed by 16S rRNA gene sequencing and biochemical testing, one was identified as Bacteroides intestinalis AM-1, which was not previously recognized as a secondary bile-acid producer. GC-MS revealed that B. intestinalis AM-1 converts cholic acid (CA) and chenodeoxycholic acid into their 7-oxo derivatives, 7-oxo-deoxycholic acid (7-oxo-DCA) and 7-oxo-lithocholic acid, respectively. Thus, B. intestinalis AM-1 possesses 7α-hydroxysteroid dehydrogenase (7α-HSDH) activity. In liquid culture, B. intestinalis AM-1 showed a relatively higher productivity of 7-oxo-DCA than Escherichia coli HB101 and Bacteroides fragilis JCM11019T, which are known to possess 7α-HSDH activity. The level of 7α-HSDH activity was higher in B. intestinalis AM-1 than in the other two strains under the conditions tested. The 7α-HSDH activity in each of the three strains is not induced by CA; instead, it is regulated in a growth phase-dependent manner.  相似文献   
985.
The O,N-deacylated derivative (deON) and polysaccharide part (PS) from the lipopolysaccharide (LPS) of Escherichia coli C strain were separated by strongly basic anion-exchange chromatography (SAX) based on the differences in the number of charged phosphate and ethanolamine substituents. They were also successfully separated and characterized by capillary zone electrophoresis and subsequent ESI-ion trap-MS (CZE/ESI-IT-MS). The O-deacylated LPS (deO) presented as a broad peak in CZE/ESI-IT-MS. However, more than twelve species could be discriminated by an extracted ion electropherogram (EIE) and monitoring the species which have different numbers of phosphate and ethanolamine substituents on polysaccharide backbone.  相似文献   
986.
The large degree of phenotypic fluctuation among isogenic cells highlighted by recent studies on stochastic gene expression confers fitness on some individuals through a ‘bet‐hedging’ strategy, when faced with different selective environments. Under a single selective environment, the fluctuation may be suppressed through evolution, as it prevents maintenance of individuals around the fittest state and/or function. However, as fluctuation can increase phenotypic diversity, similar to mutation, it may contribute to the survival of individuals even under a single selective environment. To discuss whether the fluctuation increases over the course of evolution, cycles of mutation and selection for higher GFP fluorescence were carried out in Escherichia coli. Mutant genotypes possessing broad GFP fluorescence distributions with low average values emerged under strong selection pressure. These ‘broad mutants’ appeared independently on the phylogenetic tree and increased fluctuations in GFP fluorescence were attributable to the variance in mRNA abundance. In addition to the average phenotypic change by genetic mutation, the observed increase in phenotypic fluctuation acts as an evolutionary strategy to produce an extreme phenotype under severe selective environments.  相似文献   
987.
Iron (Fe) deficiency significantly effects plant growth and development. Plant symptoms under excess zinc (Zn) resemble symptoms of Fe‐deficient plants. To understand cross‐talk between excess Zn and Fe deficiency, we investigated physiological parameters of Arabidopsis plants and applied iTRAQ‐OFFGEL quantitative proteomic approach to examine protein expression changes in microsomal fraction from Arabidopsis shoots under those physiological conditions. Arabidopsis plants manifested shoot inhibition and chlorosis symptoms when grown on Fe‐deficient media compared to basal MGRL solid medium. iTRAQ‐OFFGEL approach identified 909 differentially expressed proteins common to all three biological replicates; the majority were transporters or proteins involved in photosynthesis, and ribosomal proteins. Interestingly, protein expression changes between excess Zn and Fe deficiency showed similar pattern. Further, the changes due to excess Zn were dramatically restored by the addition of Fe. To obtain biological insight into Zn and Fe cross‐talk, we focused on transporters, where STP4 and STP13 sugar transporters were predominantly expressed and responsive to Fe‐deficient conditions. Plants grown on Fe‐deficient conditions showed significantly increased level of sugars. These results suggest that Fe deficiency might lead to the disruption of sugar synthesis and utilization.  相似文献   
988.

Background

Low-dose aspirin (LDA) frequently causes small bowel injury. While some drugs have been reported to be effective in treating LDA-induced small intestinal damage, most studies did not exclude patients with mild damage thought to be clinically insignificant.

Aim

We conducted a multicenter, randomized, double-blind, placebo-controlled trial to assess the efficacy of a high dose of rebamipide, a gastroprotective drug, for LDA-induced moderate-to-severe enteropathy.

Methods

We enrolled patients who received 100 mg of enteric-coated aspirin daily for more than 3 months and were found to have more than 3 mucosal breaks (i.e., erosions or ulcers) in the small intestine by capsule endoscopy. Eligible patients were assigned to receive either rebamipide 300 mg (triple dose) 3 times daily or placebo for 8 weeks in a 2:1 ratio. Capsule endoscopy was then repeated. The primary endpoint was the change in the number of mucosal breaks from baseline to 8 weeks. Secondary endpoints included the complete healing of mucosal breaks at 8 weeks and the change in Lewis score (an endoscopic score assessing damage severity) from baseline to 8 weeks.

Results

The study was completed by 38 patients (rebamipide group: n = 25, placebo group: n = 13). After 8 weeks of treatment, rebamipide, but not placebo, significantly decreased the number of mucosal breaks (p = 0.046). While the difference was not significant (p = 0.13), the rate of complete mucosal break healing in the rebamipide group (32%, 8 of 25) tended to be higher than that in the placebo group (7.7%, 1 of 13). Rebamipide treatment significantly improved intestinal damage severity as assessed by the Lewis score (p = 0.02), whereas placebo did not. The triple dose of rebamipide was well tolerated.

Conclusions

High-dose rebamipide is effective for the treatment of LDA-induced moderate-to-severe enteropathy.

Trial Registration

UMIN Clinical Trials Registry UMIN000003463  相似文献   
989.
990.
The ubiquitin ligase RAD18 is involved in post replication repair pathways via its recruitment to stalled replication forks, and its role in the ubiquitylation of proliferating cell nuclear antigen (PCNA). Recently, it has been reported that RAD18 is also recruited to DNA double strand break (DSB) sites, where it plays novel functions in the DNA damage response induced by ionizing radiation (IR). This new role is independent of PCNA ubiquitylation, but little is known about how RAD18 functions after IR exposure. Here, we describe a role for RAD18 in the IR-induced DNA damage signaling pathway at G2/M phase in the cell cycle. Depleting cells of RAD18 reduced the recruitment of the DNA damage signaling factors ATM, γH2AX, and 53BP1 to foci in cells at the G2/M phase after IR exposure, and attenuated activation of the G2/M checkpoint. Furthermore, depletion of RAD18 increased micronuclei formation and cell death following IR exposure, both in vitro and in vivo. Our data suggest that RAD18 can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after IR exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号