首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2008篇
  免费   138篇
  2023年   5篇
  2022年   17篇
  2021年   21篇
  2020年   14篇
  2019年   22篇
  2018年   34篇
  2017年   29篇
  2016年   48篇
  2015年   56篇
  2014年   75篇
  2013年   138篇
  2012年   108篇
  2011年   114篇
  2010年   73篇
  2009年   71篇
  2008年   115篇
  2007年   112篇
  2006年   125篇
  2005年   129篇
  2004年   121篇
  2003年   133篇
  2002年   125篇
  2001年   27篇
  2000年   26篇
  1999年   32篇
  1998年   27篇
  1997年   28篇
  1996年   19篇
  1995年   22篇
  1994年   21篇
  1993年   19篇
  1992年   25篇
  1991年   26篇
  1990年   20篇
  1989年   21篇
  1988年   20篇
  1987年   11篇
  1986年   9篇
  1985年   17篇
  1984年   12篇
  1983年   6篇
  1982年   8篇
  1981年   12篇
  1980年   4篇
  1979年   13篇
  1978年   3篇
  1977年   5篇
  1976年   5篇
  1973年   5篇
  1968年   4篇
排序方式: 共有2146条查询结果,搜索用时 15 毫秒
991.
992.
Subtilisin-like proteases have been grouped into six families based on a sequence of the catalytic domain. One of the six is the kexin family, of which furin is a representative protease. All members of the kexin family, except one, are from eukaryotes. The one prokaryotic protease is a serine protease of Aeromonas sorbria (ASP). Here, we examined the substrate specificity of ASP based on the cleavage of short peptides. The results showed that ASP preferentially cleaves the peptide bond following two basic residues, one of which is Lys, but not the bond following a single basic residue. This indicates that the tertiary structure around the catalytic domain of ASP resembles, but is not identical to that of furin. Prekallikrein was cleaved into four fragments by ASP, indicating that the protein must be cleaved at specific sequences.  相似文献   
993.
We molecularly cloned new families of site-specific repetitive DNA sequences from BglII- and EcoRI-digested genomic DNA of the Syrian hamster (Mesocricetus auratus, Cricetrinae, Rodentia) and characterized them by chromosome in situ hybridization and filter hybridization. They were classified into six different types of repetitive DNA sequence families according to chromosomal distribution and genome organization. The hybridization patterns of the sequences were consistent with the distribution of C-positive bands and/or Hoechst-stained heterochromatin. The centromeric major satellite DNA and sex chromosome-specific and telomeric region-specific repetitive sequences were conserved in the same genus (Mesocricetus) but divergent in different genera. The chromosome-2-specific sequence was conserved in two genera, Mesocricetus and Cricetulus, and a low copy number of repetitive sequences on the heterochromatic chromosome arms were conserved in the subfamily Cricetinae but not in the subfamily Calomyscinae. By contrast, the other type of repetitive sequences on the heterochromatic chromosome arms, which had sequence similarities to a LINE sequence of rodents, was conserved through the three subfamilies, Cricetinae, Calomyscinae and Murinae. The nucleotide divergence of the repetitive sequences of heterochromatin was well correlated with the phylogenetic relationships of the Cricetinae species, and each sequence has been independently amplified and diverged in the same genome.  相似文献   
994.
Alzheimer's disease (AD) is a common neurodegenerative disorder that causes senile dementia. The pathological characteristics are the appearance of neurofibrillary tangles comprising abnormally phosphorylated tau and senile plaques composed of amyloid beta-protein depositions. Amyloid beta-protein precursor (APP) and presenilin (PS) are known to be causative genes of familial AD. Recent analyses have documented that APP functions in the axonal transport of vesicles and PS regulates intracellular protein trafficking. Dystrophic neurites, in which APP and Alcadein accumulate in swollen axons, are also observed in AD brain. These pathological characteristics and the features of AD-related proteins suggest that AD is a disease of the vesicular transport system. Here we review recent progress of research on AD pathogenesis from the viewpoint of membrane trafficking.  相似文献   
995.
Actin reorganization is important for regulation of neuronal morphology. Neural Wiskott-Aldrich syndrome protein (N-WASP) is an important regulator of actin polymerization and also known to be strongly expressed in brain. Recently, Toca-1 (transducer of Cdc42-dependent actin assembly) has been shown to be required for Cdc42 to activate N-WASP from biochemical experiments. Toca-1 has three functional domains: an F-BAR/EFC domain at the N terminus, an HR1 at the center, and an SH3 domain at the C terminus. The F-BAR/EFC domain induces tubular invagination of plasma membrane, while Toca-1 binds both N-WASP and Cdc42 through the SH3 domain and the HR1, respectively. However, the physiological role of Toca-1 is completely unknown. Here we have investigated the neural function of Toca-1. Toca-1 is strongly expressed in neurons including hippocampal neurons in developing brain at early times. Knockdown of Toca-1 in PC12 cells significantly enhances neurite elongation. Consistently, overexpression of Toca-1 suppresses neurite elongation through the F-BAR/EFC domain with a membrane invaginating property, suggesting an implication of membrane trafficking in the neural function of Toca-1. In addition, knockdown of N-WASP, to our surprise, also enhances neurite elongation in PC12 cells, which is in clear contrast to the previous report that dominant negative mutants of N-WASP suppress neurite extension in PC12 cells. On the other hand, knockdown of Toca-1 in cultured rat hippocampal neurons enhances axon branching a little but not axon elongation, while knockdown of N-WASP enhances both axon elongation and branching. These results suggest that a vesicle trafficking regulator Toca-1 regulates different aspects of neuronal morphology from N-WASP.  相似文献   
996.
997.
998.

Background  

Successful realization of a "systems biology" approach to analyzing cells is a grand challenge for our understanding of life. However, current modeling approaches to cell simulation are labor-intensive, manual affairs, and therefore constitute a major bottleneck in the evolution of computational cell biology.  相似文献   
999.
1000.
Myosins comprise a large superfamily of molecular motors that generate mechanical force in ATP-dependent interactions with actin filaments. On the basis of their conserved motor domain sequences, myosins can be divided into at least 17 classes, 3 of which (VIII, XI, XIII) are found in plants. Although full sequences of myosins are available from several species of green plants, little is known about the functions of these proteins. Additionally, sequence information for algal myosin is incomplete, and little attention has been given to the molecular evolution of myosin from green plants. In the present study, the Closterium peracerosum-strigosum-littorale complex was used as a model system for investigating a unicellular basal charophycean alga. This organism has been well studied with respect to sexual reproduction between its two mating types. Three types of partial sequences belonging to class XI myosins were obtained using degenerate primers designed to amplify motor domain sequences. Real-time polymerase chain reaction analysis of the respective myosin genes during various stages of the algal life cycle showed that one of the genes was more highly expressed during sexual reproduction, and that expression was cell-cycle-dependent in vegetatively grown cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号