首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2315篇
  免费   144篇
  2023年   9篇
  2022年   25篇
  2021年   18篇
  2020年   17篇
  2019年   22篇
  2018年   34篇
  2017年   30篇
  2016年   51篇
  2015年   67篇
  2014年   80篇
  2013年   153篇
  2012年   128篇
  2011年   144篇
  2010年   88篇
  2009年   77篇
  2008年   132篇
  2007年   120篇
  2006年   141篇
  2005年   143篇
  2004年   136篇
  2003年   138篇
  2002年   122篇
  2001年   41篇
  2000年   41篇
  1999年   54篇
  1998年   37篇
  1997年   32篇
  1996年   24篇
  1995年   25篇
  1994年   25篇
  1993年   25篇
  1992年   29篇
  1991年   32篇
  1990年   17篇
  1989年   27篇
  1988年   20篇
  1987年   14篇
  1986年   9篇
  1985年   16篇
  1984年   14篇
  1983年   11篇
  1982年   9篇
  1981年   16篇
  1980年   6篇
  1979年   9篇
  1978年   8篇
  1977年   9篇
  1973年   6篇
  1972年   5篇
  1969年   5篇
排序方式: 共有2459条查询结果,搜索用时 31 毫秒
991.
We investigated the role of W140 in the folding of Staphylococcal nuclease. For this purpose, we constructed the 19 possible substitution mutations at residue 140. Only three mutants, W140F, W140H, and W140Y, adopted native-like structures under physiological conditions and showed native-like enzymatic activities. In contrast, the other 16 mutants took on compact unfolded structures under physiological conditions and the enzymatic activities of these mutants were decreased to approximately 70% of wild-type levels. These 16 mutants maintained substrate-induced foldability. These results strongly indicate that the side-chain information encoded by residue 140 is essential to maintain a stable native structure, and that this residue must be an aromatic side chain. The order of thermal stability was wild type > W140H > W140F = W140Y. Therefore, the five-membered nitrogen-containing ring of the indole is thought to bear the essential information. In the crystal structure of staphylococcal nuclease, the five-membered ring is at the local center of the C-terminal cluster through hydrophobic interactions. This cluster plays a key role in the interaction connecting the C-terminal region and the N-terminal beta-core. Mutants other than W140H, W140F, and W140Y lost the ability to form the local core, which caused the loss of the long-range interactions between the C-terminal and N-terminal regions. Inhibitor or substrate binding to these mutants compensates for the lack of long-range interactions generated by W140.  相似文献   
992.
993.
The Golgi apparatus consists of a set of vesicular compartments which are distinguished by their marker proteins. These compartments are physically separated in the Saccharomyces cerevisiae cell. To characterize them extensively, we immunoisolated vesicles carrying either of the SNAREs Sed5 or Tlg2, the markers of the early and late Golgi compartments, respectively, and analyzed the membrane proteins. The composition of proteins was mostly consistent with the position of each compartment in the traffic. We found six uncharacterized but evolutionarily conserved proteins and named them Svp26 (Sed5 compartment vesicle protein of 26 kDa), Tvp38, Tvp23, Tvp18, Tvp15 (Tlg2 compartment vesicle proteins of 38, 23, 18, and 15 kDa), and Gvp36 (Golgi vesicle protein of 36 kDa). The localization of Svp26 in the early Golgi compartment was confirmed by microscopic and biochemical means. Immunoprecipitation indicated that Svp26 binds to itself and a Golgi mannosyltransferase, Ktr3. In the absence of Svp26, a considerable portion of Ktr3 was mislocalized in the endoplasmic reticulum. Our data suggest that Svp26 has a novel role in retention of a subset of membrane proteins in the early Golgi compartments.  相似文献   
994.
It has been proposed that DNA methylation plays an important role in the inactivation of transposons. This view stems from a comparison of the degree of methylation of transposons in the active and inactive state. However, direct evidence for the degree of methylation required for the suppression of transposition has not been reported. Transposon Tam3 in Antirrhinum majus undergoes somatic reversal of its transposition activity, which is tightly controlled by temperature: low temperature around 15 degrees C permits transposition, high temperatures around 25 degrees C strongly inhibits it. Our previous study had shown that the methylation state of the Tam3 end regions is negatively correlated with the Tam3 transposition frequency. The results of the present study reveal that the inactive state of Tam3 copies at high temperature is unlikely to be directly coupled to the methylation state. Treatment with methylation inhibitors (5-azacytidine or 5-azacytidine+ethionine) does not affect Tam3 excision frequency in calli derived from Antirrhinum hypocotyls. The results suggest that methylation is not essential for the suppression of Tam3 transposition at high temperature, but rather that some other mechanism(s) involved in the control of Tam3 transposition may be obscured by methylation.  相似文献   
995.
996.
Many eukaryotic proteins have been produced successfully in Escherichia coli. However, not every gene can be expressed efficiently in this organism. Most proteins, especially those with multiple disulfide bonds, have been shown to form insoluble protein or inclusion body in E. coli. An inactive form of protein would require an in vitro refolding step to regain biological functions. In this study, we described the system for soluble expression of a single-chain variable fragment (scFv) against hepatocellular carcinoma (Hep27scFv) by coexpressing Dsb protein and enhancing with medium additives. The results revealed that overexpression of DsbABCD protein showed marked effect on the soluble production of Hep27scFv, presumably facilitating correct folding. The optimal condition for soluble scFv expression could be obtained by adding 0.5M sorbitol to the culture medium. The competitive enzyme-linked immunosorbent assay (ELISA) indicated that soluble scFv expressed by our method retains binding activity toward the same epitope on a hepatocellular carcinoma cell line (HCC-S102) recognized by intact antibody (Ab) (Hep27 Mab). Here, we report an effective method for soluble expression of scFv in E. coli by the Dsb coexpression system with the addition of sorbitol medium additive. This method might be applicable for high-yield soluble expression of proteins with multiple disulfide bonds.  相似文献   
997.
998.
Chondroitin sulfate (CS) and dermatan sulfate (DS) chains play roles in the central nervous system. Most notably, CS/DS hybrid chains (E-CS/DS) purified from embryonic pig brains bind growth factors and promote neurite outgrowth toward embryonic mouse hippocampal neurons in culture. However, the neuritogenic mechanism is not well understood. Here we showed that pleiotrophin (PTN), a heparin-binding growth factor, produced mainly by glia cells, was the predominant binding partner for E-CS/DS in the membrane-associated protein fraction of neonatal rat brain. The CS/DS chains were separated on a PTN column into unbound, low affinity, and high affinity fractions. The latter two fractions promoted outgrowth of dendrite- and axon-like neurites, respectively, whereas the unbound fraction showed no such activity. The activity of the low affinity fraction was abolished by an anti-PTN antibody or when glia cells were removed from the culture. In contrast, the high affinity fraction displayed activity under both these conditions. Hence, PTN mainly from glia cells mediated the activity of the low affinity but not the high affinity fraction. The anti-CS antibody 473HD neutralized the neuritogenic activities of both fractions. Interaction analysis indicated that the 473HD epitope and PTN-binding domains in the E-CS/DS chains largely overlap. The three affinity subfractions differed in disaccharide composition and the distribution of l-iduronic acid-containing disaccharides along the chains. Oversulfated disaccharides and nonconsecutive iduronic acid-containing units were the requirements for the E-CS/DS chains to bind PTN and to exhibit the neuritogenic activities. Thus, CS subpopulations with distinct structures in the mammalian brain play different roles in neuritogenesis through distinct molecular mechanisms, at least in part by regulating the functions of growth factors.  相似文献   
999.
An exo-beta-1,3-galactanase gene from Phanerochaete chrysosporium has been cloned, sequenced, and expressed in Pichia pastoris. The complete amino acid sequence of the exo-beta-1,3-galactanase indicated that the enzyme consists of an N-terminal catalytic module with similarity to glycoside hydrolase family 43 and an additional unknown functional domain similar to carbohydrate-binding module family 6 (CBM6) in the C-terminal region. The molecular mass of the recombinant enzyme was estimated as 55 kDa based on SDS-PAGE. The enzyme showed reactivity only toward beta-1,3-linked galactosyl oligosaccharides and polysaccharide as substrates but did not hydrolyze beta-1,4-linked galacto-oligosaccharides, beta-1,6-linked galacto-oligosaccharides, pectic galactan, larch arabinogalactan, arabinan, gum arabic, debranched arabinan, laminarin, soluble birchwood xylan, or soluble oat spelled xylan. The enzyme also did not hydrolyze beta-1,3-galactosyl galactosaminide, beta-1,3-galactosyl glucosaminide, or beta-1,3-galactosyl arabinofuranoside, suggesting that it specifically cleaves the internal beta-1,3-linkage of two galactosyl residues. High performance liquid chromatographic analysis of the hydrolysis products showed that the enzyme produced galactose from beta-1,3-galactan in an exo-acting manner. However, no activity toward p-nitrophenyl beta-galactopyranoside was detected. When incubated with arabinogalactan proteins, the enzyme produced oligosaccharides together with galactose, suggesting that it is able to bypass beta-1,6-linked galactosyl side chains. The C-terminal CBM6 did not show any affinity for known substrates of CBM6 such as xylan, cellulose, and beta-1,3-glucan, although it bound beta-1,3-galactan when analyzed by affinity electrophoresis. Frontal affinity chromatography for the CBM6 moiety using several kinds of terminal galactose-containing oligosaccharides as the analytes clearly indicated that the CBM6 specifically interacted with oligosaccharides containing a beta-1,3-galactobiose moiety. When the degree of polymerization of galactose oligomers was increased, the binding affinity of the CBM6 showed no marked change.  相似文献   
1000.
Indigocarmine, which is widely used as a synthetic colouring agent for foods and cosmetics in many countries, was reduced to its leuco form and decolorized by rat liver microsomes with NADPH under anaerobic conditions. The reductase activity was enhanced in liver microsomes of phenobarbital-treated rats, and inhibited by diphenyliodonium chloride, a NADPH-cytochrome P450 reductase (P450 reductase) inhibitor, but was not inhibited by SKF 525-A or carbon monoxide. Indigocarmine reductase activity was exhibited by purified rat P450 reductase. In contrast, when indigocarmine was incubated with rat liver microsomes and NADPH under aerobic conditions, superoxide radical was produced and its production was inhibited by superoxide dismutase and diphenyliodonium chloride. When indigocarmine was incubated with purified rat P450 reductase in the presence of NADPH, superoxide radical production was enhanced 17.7-fold (similar to the enhancement of indigocarmine-reducing ability) as compared with that of rat liver microsomes. A decrease of one molecule of NADPH was accompanied with formation of about two molecules of superoxide radical. P450 reductase exhibited little reductase activity towards indigo and tetrabromoindigo, which also afforded little superoxide radical under aerobic conditions. These results indicate that indigocarmine is reduced by P450 reductase to its leuco form, and superoxide radical is produced by autoxidation of the leuco form, through a mechanism known as futile redox cycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号