首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1002篇
  免费   45篇
  2022年   6篇
  2021年   8篇
  2020年   3篇
  2019年   7篇
  2018年   11篇
  2017年   9篇
  2016年   15篇
  2015年   18篇
  2014年   23篇
  2013年   69篇
  2012年   41篇
  2011年   38篇
  2010年   30篇
  2009年   29篇
  2008年   78篇
  2007年   53篇
  2006年   58篇
  2005年   61篇
  2004年   43篇
  2003年   43篇
  2002年   50篇
  2001年   28篇
  2000年   44篇
  1999年   39篇
  1998年   5篇
  1997年   10篇
  1996年   7篇
  1995年   11篇
  1994年   13篇
  1993年   8篇
  1992年   24篇
  1991年   23篇
  1990年   16篇
  1989年   17篇
  1988年   10篇
  1987年   10篇
  1986年   13篇
  1985年   8篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1978年   3篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1972年   5篇
  1969年   4篇
  1967年   3篇
排序方式: 共有1047条查询结果,搜索用时 250 毫秒
101.
Sleep and Biological Rhythms - Several epidemiological studies have shown that more than 20% of the general adult population has symptoms of insomnia, but only about 5% of them are receiving...  相似文献   
102.
A protein function is carried out by a specific domain localized at a specific position. In the present study, we report that, within a gene, a specific amino acid sequence can move between a certain position and another position. This was discovered when the sequences of restriction-modification systems within the bacterial species Helicobacter pylori were compared. In the specificity subunit of Type I restriction-modification systems, DNA sequence recognition is mediated by target recognition domain 1 (TRD1) and TRD2. To our surprise, several sequences are shared by TRD1 and TRD2 of genes (alleles) at the same locus (chromosomal location); these domains appear to have moved between the two positions. The gene/protein organization can be represented as x-(TRD1)-y-x-(TRD2)-y, where x and y represent repeat sequences. Movement probably occurs by recombination at these flanking DNA repeats. In accordance with this hypothesis, recombination at these repeats also appears to decrease two TRDs into one TRD or increase these two TRDs to three TRDs (TRD1-TRD2-TRD2) and to allow TRD movement between genes even at different loci. Similar movement of domains between TRD1 and TRD2 was observed for the specificity subunit of a Type IIG restriction enzyme. Similar movement of domain between TRD1 and TRD2 was observed for Type I restriction-modification enzyme specificity genes in two more eubacterial species, Streptococcus pyogenes and Mycoplasma agalactiae. Lateral domain movements within a protein, which we have designated DOMO (domain movement), represent novel routes for the diversification of proteins.  相似文献   
103.
Radiotherapy is a well-established treatment for cancer. However, the existence of radioresistant cells is one of the major obstacles in radiotherapy. In order to understand the mechanism of cellular radioresistance and develop more effective radiotherapy, we have established clinically relevant radioresistant (CRR) cell lines, which continue to proliferate under daily exposure to 2 Gray (Gy) of X-rays for >30 days. X-ray irradiation significantly induced autophagic cells in parental cells, which was exiguous in CRR cells, suggesting that autophagic cell death is involved in cellular radiosensitivity. An autophagy inducer, rapamycin sensitized CRR cells to the level of parental cells and suppressed cell growth. An autophagy inhibitor, 3-methyladenine induced radioresistance of parental cells. Furthermore, inhibition of autophagy by knockdown of Beclin-1 made parental cells radioresistant to acute radiation. These suggest that the suppression of autophagic cell death but not apoptosis is mainly involved in cellular radioresistance. Therefore, the enhancement of autophagy may have a considerable impact on the treatment of radioresistant tumor.  相似文献   
104.
105.
Seiza is a Japanese traditional floor sitting style, sitting down with both legs set at about a 180 degree angle and both femurs on both lower legs. We examined the influence of the somatic dysesthesia and decrease in voluntary toe flexion strength (VTF) induced by Seiza on the center of pressure (COP) sway. Fifteen adults participated in this experiment. COP Sway was measured immediately after a chair resting (pre-test), when a plantar dysethesia occurred (post-test A), and when a decrease (under 30% of maximal voluntary contraction (MVC)) in the VTF set in (post-test B). Tissue oxygenation kinetics in the soleus muscle and plantar somatosensory thresholds (ST) were measured just before each COP test and during Seiza. From starting Seiza, oxygenated hemoglobin/myoglobin decreased markedly and reached a plateau within about 6 min. ST abruptly increased at about 19 min from starting Seiza. VTF decreased to less than 30% MVC in 33% of the participants after 10 min from the acute increase in ST, and in 100% after 20 min. When sustaining Seiza for 19 min, ST rose and sway velocity and antero-posterior sway increased. With continued Seiza, VTF decreased to below 30% MVC at 10 - 20 min, and the above stated body sway further markedly increase.  相似文献   
106.
Intake of a low-phosphate diet stimulates transepithelial transport of Pi in small intestine as well as in renal proximal tubules. In both organs, this is paralleled by a change in the abundance of the apically localized NaPi cotransporters NaPi type IIa (NaPi-IIa) and NaPi type IIb (NaPi-IIb), respectively. Low-Pi diet, via stimulation of the activity of the renal 25-hydroxyvitamin-D3-1-hydroxylase (1OHase), leads to an increase in the level of 1,25-dihydroxy-vitamin D3 [1,25(OH)2D]. Regulation of the intestinal absorption of Pi and the abundance of NaPi-IIb by 1,25(OH)2D has been supposed to involve the vitamin D receptor (VDR). In this study, we investigated the adaptation to a low-Pi diet of NaPi-IIb in small intestine as well as NaPi-IIa in kidneys of either VDR- or 1OHase-deficient mice. In both mouse models, upregulation by a low-Pi diet of the NaPi cotransporters NaPi-IIa and NaPi-IIb was normal, i.e., similar to that observed in the wild types. Also, in small intestines of VDR- and 1OHase-deficient mice, the same changes in NaPi-IIb mRNA found in wild-type mice were observed. On the basis of the results, we conclude that the regulation of NaPi cotransport in small intestine (via NaPi-IIb) and kidney (via NaPi-IIa) by low dietary intake of Pi cannot be explained by the 1,25(OH)2D-VDR axis. NaPi type IIb; vitamin D3  相似文献   
107.
Although of clinical importance, little is known about the mechanism of seizure in neuronal ceroid lipofuscinosis (NCL). In the present study, we have attempted to elucidate the mechanism underlying the seizure of cathepsin D-deficient (CD-/-) mice that show a novel type of lysosomal storage disease with a phenotype resembling late infantile NCL. In hippocampal slices prepared from CD-/- mice at post-natal day (P)24, spontaneous burst discharges were recorded from CA3 pyramidal cells. At P24, the mean amplitude of IPSPs after stimulation of the mossy fibres was significantly smaller than that of wild-type mice, which was substantiated by the decreased level of gamma-aminobutyric acid (GABA) contents in the hippocampus measured by high-performance liquid chromatography (HPLC). At this stage, activated microglia were found to accumulate in the pyramidal cell layer of the hippocampal CA3 subfield of CD-/- mice. However, there was no significant change in the numerical density of GABAergic interneurons in the CA3 subfield of CD-/- mice at P24, estimated by counting the number of glutamate decarboxylase (GAD) 67-immunoreactive somata. In the hippocampus and the cortex of CD-/- mice at P24, some GABAergic interneurons displayed extremely high somatic granular immunoreactivites for GAD67, suggesting the lysosomal accumulation of GAD67. GAD67 levels in axon terminals abutting on to perisomatic regions of hippocampal CA3 pyramidal cells was not significantly changed in CD-/- mice even at P24, whereas the total protein levels of GAD67 in both the hippocampus and the cortex of CD-/- mice after P24 were significantly decreased as a result of degradation. Furthermore, the recombinant human GAD65/67 was rapidly digested by the lysosomal fraction prepared from the whole brain of wild-type and CD-/- mice. These observations strongly suggest that the reduction of GABA contents, presumably because of lysosomal degradation of GAD67 and lysosomal accumulation of its degraded forms, are responsible for the dysfunction of GABAergic interneurons in the hippocampal CA3 subfield of CD-/- mice.  相似文献   
108.
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) could play a role in stimulating pituitary hormone release in fish brain. In this study, we used immunochemical techniques to examine the histological and quantitative distribution of PACAP in the central nervous system (CNS) of a teleost, the stargazer, Uranoscopus japonicus. In addition, high performance liquid chromatographic (HPLC) analysis was performed to characterize the form of PACAP present, while the relationship between PACAP and adenohypophysial hormones was also determined immunohistochemically. PACAP-like immunoreactive (LI) neuronal cell bodies and fibers were found not only in the hypothalamo-pituitary region but also in the midbrain and hindbrain regions. PACAP-LI fibers were identified in the neurohypophysis in close proximity to pituitary cells containing immunoreactive hormones such as somatolactin, the N-terminal peptide of proopiomelanocortin, and N-acetyl endorphin. The concentration of immunoreactive PACAP in whole brain tissue was approximately 300 pmol/g wet weight. The average concentrations of immunoreactive PACAP in regions of the telencephalon, diencephalon, tectum, cerebellum, and rhombencephalon were 217.53, 510.26, 83.30, 148.64, and 364.62 pmol/g, respectively. In reverse-phase HPLC experiments, the predominant form of immunoreactive PACAP eluted closely with synthetic stargazer PACAP38, while PACAP27-like immunoreactivity was negligible. These results suggest that PACAP38 is the predominant PACAP form in the stargazer CNS, and that PACAP acts not only as a hypophysiotropic factor for adenohypophysial hormone release but also as a neurotransmitter and neuromodulator in the CNS.  相似文献   
109.
Seiza is one of the most commonly used sitting postures in various enrichment lessons of Japanese origin. It is reported that Seiza with large knee flexion produces harmful effects on the cartilage of knee joints and hemodynamics of the lower legs. This study aimed at examining the influence of Seiza on tissue oxygenation kinetics of the lower limbs, plantar somatic and cutaneous sensation, and the center of foot pressure (COP) sway using 10 young adults. COP sway was measured for 1 min just after sitting on a chair for 10 min (pre-test), after 30-min Seiza (post-test 1), and 5 min after Seiza (post-test 2). To evaluate the COP sway, we used 4 body sway factors; unit time sway factor (F1), front-back sway factor (F2), left-right sway factor (F3) and high frequency band power spectrum factor (F4). Physiological parameters (i.e., tissue oxygenation kinetics in the lower legs and sensation on the sole) were measured during 30-min Seiza (continuously on tissue oxygenation, and at 1 min intervals on sensation), and for 1 min just before each COP test (pre-test, post-test 1 and 2).Oxygenated hemoglobin/myoglobin (Hb/Mb) concentration decreased markedly and deoxygenated Hb/Mb concentration increased markedly, resulting in reaching a plateau state at around 7 min. Tissue Hb/Mb index changed little during Seiza. Proprioceptive perception thresholds increased rapidly about 17 min after Starting Seiza. Means of 3 COP sway factors of F1, F2 and F4 were significantly higher in post-test 1 than in pre-test and post-test 2. In conclusion, a marked decrease in tissue oxygen concentration of the lower legs within 4-5 min, and an increase of proprioceptive perception thresholds in the sole at about 17 min are induced by Seiza. Although wiggle and quick body sway in the antero-posterior axis increases markedly in an upright posture just after maintaining Seiza for 30 min, sway recovers after sitting on a chair for 5 min.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号