首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   874篇
  免费   46篇
  920篇
  2023年   4篇
  2022年   15篇
  2021年   28篇
  2020年   11篇
  2019年   14篇
  2018年   17篇
  2017年   15篇
  2016年   36篇
  2015年   48篇
  2014年   44篇
  2013年   98篇
  2012年   78篇
  2011年   71篇
  2010年   50篇
  2009年   36篇
  2008年   47篇
  2007年   54篇
  2006年   50篇
  2005年   35篇
  2004年   38篇
  2003年   35篇
  2002年   24篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1973年   1篇
  1972年   4篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有920条查询结果,搜索用时 0 毫秒
101.
102.
103.
The constituents of Virola carinata were established as dehydrodieugenol, its monomethyl ether and sitosterol.  相似文献   
104.
105.
The gene encoding subtilisin-like protease T. kodakaraensis subtilisin was cloned from a hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. T. kodakaraensis subtilisin is a member of the subtilisin family and composed of 422 amino acid residues with a molecular weight of 43,783. It consists of a putative presequence, prosequence, and catalytic domain. Like bacterial subtilisins, T. kodakaraensis subtilisin was overproduced in Escherichia coli in a form with a putative prosequence in inclusion bodies, solubilized in the presence of 8 M urea, and refolded and converted to an active molecule. However, unlike bacterial subtilisins, in which the prosequence was removed from the catalytic domain by autoprocessing upon refolding, T. kodakaraensis subtilisin was refolded in a form with a putative prosequence. This refolded protein of recombinant T. kodakaraensis subtilisin which is composed of 398 amino acid residues (Gly−82 to Gly316), was purified to give a single band on a sodium dodecyl sulfate (SDS)-polyacrylamide gel and characterized for biochemical and enzymatic properties. The good agreement of the molecular weights estimated by SDS-polyacrylamide gel electrophoresis (44,000) and gel filtration (40,000) suggests that T. kodakaraensis subtilisin exists in a monomeric form. T. kodakaraensis subtilisin hydrolyzed the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide only in the presence of the Ca2+ ion with an optimal pH and temperature of pH 9.5 and 80°C. Like bacterial subtilisins, it showed a broad substrate specificity, with a preference for aromatic or large nonpolar P1 substrate residues. However, it was much more stable than bacterial subtilisins against heat inactivation and lost activity with half-lives of >60 min at 80°C, 20 min at 90°C, and 7 min at 100°C.  相似文献   
106.
Pseudomonas M16 is the mutant derived from a facultative methylotroph, Pseudomonas N842, which is the potent producer of coenzyme Q10 (CoQ10). This mutant with elevated productivity of CoQ10 was observed to accumulate the significant amount of another CoQ homolog, which could not be detected in the parent strain. This CoQ homolog was extracted from the intact cells of the mutant and purified to crystaline state. The chemical properties and the results of UV, NMR and mass spectrometries revealed that this CoQ homolog was CoQ11.  相似文献   
107.
Saccharomyces servazzii plays a crucial role in the making of Japanese radish pickles. To make more flavorsome pickles, we sought to generate trifluoroleucine-resistant mutants of S. servazzii. The three resulting mutants could be classified into two types: one that produces more isoamyl alcohol than the parental strain, and one that produces less. The first type has been well documented in Saccharomyces cerevisiae but the latter appears to be novel and has been characterized as such.  相似文献   
108.
Recent studies have shown the gene expression of several transporters to be circadian rhythmic. However, it remains to be elucidated whether the expression of P‐glycoprotein, which is involved in the transport of many medications, undergoes 24 h rhythmicity. To address this issue, we investigated daily profiles of P‐glycoprotein mRNA and protein levels in peripheral mouse tissues. In the liver and intestine, but not in the kidney, Abcb1a mRNA expression showed clear 24 h rhythmicity. On the other hand, Abcb1b and Abcb4, the other P‐glycoprotein genes, did not exhibit significant rhythmic expression in the studied tissues. In the intestine, levels of whole P‐glycoprotein also exhibited a daily rhythm, with a peak occurring in the latter half of the light phase and a trough at the onset of the light phase. Consistent with the day‐night change of P‐glycoprotein level, the ex vivo accumulation of digoxin, an Abcb1a P‐glycoprotein substrate, into the intestinal segments at the onset of dark phase was significantly lower than it was at the onset of the light phase. Thus, Abcb1a P‐glycoprotein expression, and apparently its function, are 24 h rhythmic at least in mouse intestine tissue. This circadian variation might be involved in various chronopharmacological phenomena.  相似文献   
109.
Converting lignocellulosics into biofuels remains a promising route for biofuel production. To facilitate strain development for specificity and productivity of cellulosic biofuel production, a user friendly Escherichia coli host was engineered to produce isobutanol, a drop-in biofuel candidate, from cellobiose. A beta-glucosidase was expressed extracellularly by either excretion into the media, or anchoring to the cell membrane. The excretion system allowed for E. coli to grow with cellobiose as a sole carbon source at rates comparable to those with glucose. The system was then combined with isobutanol production genes in three different configurations to determine whether gene arrangement affected isobutanol production. The most productive strain converted cellobiose to isobutanol in titers of 7.64?±?0.19 g/L with a productivity of 0.16 g/L/h. These results demonstrate that efficient cellobiose degradation and isobutanol production can be achieved by a single organism, and provide insight for optimization of strains for future use in a consolidated bioprocessing system for renewable production of isobutanol.  相似文献   
110.
Macrophages play important roles in the host innate immune response and are involved in the onset of diseases caused by inflammation. Toll-like receptor 4 (TLR4)-mediated inflammatory responses of macrophages may be associated with diseases such as diabetes and diseases of the cardiovascular system. Hydroxytyrosol (HT) exerts strong antioxidant and anti-inflammatory effects and may be applied in the treatment of inflammatory diseases. In the present study conducted in vitro, we investigated the effects of the TLR4-dependent anti-inflammatory effect of HT on peritoneal macrophage of BALB/c mice. We show here that the elevated levels of iNOS gene expression and nitric oxide production induced by lipopolysaccharide (LPS) (0.25 μg/ml) were suppressed by HT (12.5 μg/ml). LPS-dependent NF-κB gene expression and phosphorylation of NF-κB were not affected by HT under these conditions. In contrast, the expression of TNF-α was significantly increased in the presence of LPS and HT. These results suggest that HT suppressed nitric oxide production by decreasing iNOS gene expression through a mechanism independent of the NF-κB signaling pathway. These novel findings suggest that the modulation by HT of the expression of genes involved in inflammation may involve multiple mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号